Kompleks sonni geometrik tasvirlash. Kompleks sonning trigonometrik shaklda yozilishi. Trigonometrik shakldagi



Download 378,92 Kb.
Sana03.06.2022
Hajmi378,92 Kb.
#631598
Bog'liq
triganametrik


Kompleks sonni geometrik tasvirlash. Kompleks sonning trigonometrik shaklda yozilishi. Trigonometrik shakldagi komleks sonlar ustida amallar
kompleks sonni geometrik tasvirlash uchun to’g’ri burchakli Dekart koordinatalari sistemasidan foydalanamiz. Bunda o’qida birlikni, o’qida birlikni ajratib ularning oxirlaridan o’qlarga perpendikulyarlar o’tkazamiz. Ular o’zaro kesishib nuqtani hosil qiladi. Bu nuqta kompleks sonning tekislikdagi geometrik tasviri bo’ladi. Demak, har bir kompleks songa tekislikda bitta nuqta mos kelar ekan va aksincha tekislikdagi har bir  nuqtaga bitta kompleks son mos keladi (1-chizma). Bu esa kompleks sonlar to’plami bilan tekislik nuqtalari orasida bir qiymatli moslik borligini anglatadi. Shunday qilib, tekislikni kompleks sonlar tekisligi deb qarash mumkin ekan.
Koordinatalar boshi nuqta bilan  nuqtani birlashtiruvchi kesma uzunligi ga kompleks sonning moduli deyiladi va kabi belgilanadi.
Pifagor teoremasiga asosan,
bo’lishi ravshan.
vektor bilan o’qi orasidagi burchakka kompleks sonning argumenti deyiladi va  kabi belgilanadi. Demak, . 1-chizmadan ko’rinadiki,
yoki bo’lib, bular yordamida kompleks sonning argumentini topish mumkin. Ulardan ifodalarga ega bo’lib, bundan esa  kompleks sonni
ko’rinishda yozish mumkinligini aniqlaymiz. Kompleks sonning bu ko’rinishiga uning trigonometrik shakli deyiladi. Kompleks sonning bunday ko’rinishda yozilishi bir qator qulayliklarga olib keladi.
Aytaylik va kompleks sonlar berilgan bo’lsin. Bu yerda , , va . U holda va lar quyidagicha aniqlanadi.
Trigonometrik shaklda berilgan  kompleks
son uchun va larni quyidagicha aniqlash mumkin:
Bu formulalar Muavr formulalari deyiladi.
Kompleks sonlar - {\displaystyle a+bi}  koʻrinishidagi sonlar, bunda {\displaystyle a}  va {\displaystyle b}  haqiqiy sonlar, {\displaystyle i}  esa mavhum birlik. {\displaystyle i^{2}=-1}  shartni qanoatlantiruvchi mavhum birlikda kompleks sonning haqiqiy qismi, b esa mavhum qismi deyiladi; b=Q boʻlganda Kompleks son haqiqiy, feO va a=0 boʻlganda Kompleks son — sof mavhum son boʻladi. Har bir a+b Kompleks son geometrik jihatdan tekislikning koordinatalari a va b dan iborat nuqtalari orqali tasvirlanadi. Agar bu nuqtaning qutb koordinatalarini g va j orqali belgilasak, u holda mos Kompleks sonni r(cos
I. Muavr formulasi kelib chiqadi: (cosq> + sincp)" = cos"
{\displaystyle \mathbb {C} }  bilanbelgilanadi. {\displaystyle \mathbb {C} }  maydon haqiqiy sonlar maydonining kengaytirilganidir. Tarixan kompleks son ikkinchi darajali tenglamalarni yechish munosabati bilan kiritilgan. Kub tenglamaning haqiqiy ildizlarini topish masalasi kompleks son ustida amallar bajarishni talab qiladi.




Download 378,92 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish