Yuqori darajali tenglamalar.
Yuqori darajali tenglamalarni yyechish usullaridan biri tenglamaning chap qismidagi ko’phadni ko’paytuvchilarga ajratish usulidir. Bu usul Bezu teoremasining ushbu qo’llanilishiga asoslanadi. soni darajali ko’phadning ildizi bo’lsa, bu ko’phadni ko’rinishda ifodalash mumkin, bunda - ni ga bo’lishda chiqadigan bo’linma bulib, 1 darajali ko’phad.
Shunday qilib, darajali = 0 tenglamaning hech bo’lmaganda bitta ildizi ma’lum bo’lsa, masalani Bezu teoremasi yordami bilan 1 darajali tenglamani yyechishga keltirish, boshqacha aytganda, tenglamaning darajasini pasaytirish mumkin.
Tabiiy savol tug’iladi: qanday qilib tenglamaning hech bo’lmasa bitta ildizini topish mumkin?
Butun koeffitsientli tenglamalar holida ratsional, xususan butun ildizlarni, albatta ular mavjud bo’lsa, topish mumkin.
Butun koeffitsientli algebraik tenglamaning ratsional ildizlarini topish usuli ushbu teorema bilan beriladi:
T e o r e m a. Qisqarmas kasr butun koeffisientli
(11)
tenglamaning ildizi bo’lsin. U holda soni ozod hadning bo’luvchisi, esa bosh koeffitsientning bo’luvchisi bo’ladi.
Isboti. qisqarmas kasrni (11) tenglamaga qo’yib va maxrajdan qutqazib, ushbu tenglikni olamiz:
(12)
(12) tenglikni ikki usul bilan qaytadan yozamiz:
; (13)
. (14)
(13) tenglikdan oydinki ko’paytma ga bo’linadi va bilan o’zaro tub bo’lgani uchun soni ga bo’linadi. SHu kabi (14) tenglikka ko’ra soni ga bo’linadi. Teorema isbotlandi.
Isbotlangan teoremadan quyidagi natijalar kelib chiqadi.
natija. Butun koeffitsientli tenglamaning istalgan butun ildizi ozod hadining bo’luvchisidan iborat.
Natija. Butun koeffitsientli tenglamaning bosh koeffitsienti 1 ga teng bo’lsa, u holda tenglamaning barcha ratsional ildizlari, ular mavjud bo’lsa, butun son bo’ladi.
6-misol. Ushbu tenglamani yeching: .
Yechish. Tenglamaning ratsional ildizlarini topamiz. qisqarmas kasr tenglamaning ildizi bo’lsin U holda ni ozod hadning bo’luvchilari ichidan, sonlari ichidan, ni esa bosh koeffitsientning musbat bo’luvchilari, ya’ni 1,2 ichidan izlash kerak. Shunday qilib, tenglamaning ratsional ildizlarini , sonlari ichidan izlash kerak bo’ladi. Tekshirib ko’rish mumkinki, soni berilgan tenglamaning ildizi bo’ladi.
ko’paytuvchini qavsdan chiqarish kerakligini nazarda tutgan holda tenglamaning chap qismini ko’paytuvchilarga ajratib, tenglamani olamiz. Ikkinchi ko’paytuvchini 0 ga tenglashtirib, ildizga ega bo’lamiz.
Javob: .
Mustahkamlash uchun savollar
1. Kompleks son deb nimaga aytiladi?
2. Kompleks sonning algebraik shakli qanday bo’ladi?
3. Kompleks sonlarning yig’indisi, ayirmasi, ko’paytmasi va bo’linmasi qanday topiladi?
4. Kompleks sonlarning trigonometrik ko’rinishi qanday?
5. Muavr formulasi nimadan iborat?
6. Eyler formulasi qanday?
7. Algebraning asosiy teoremasi nimadan iborat?
8. Kardano formulasi qanday?
9. Yuqori darajali tenglamalarni yyechishning qanday usullarini bilasiz?
Aim.uz
Do'stlaringiz bilan baham: |