Kоmpаkt to‘plamlar va fаzоlar


Masala yechish namunalari



Download 50,3 Kb.
bet4/5
Sana14.01.2022
Hajmi50,3 Kb.
#361785
1   2   3   4   5
Bog'liq
Kîmpàkt to‘plamlar va fàzîlar

Masala yechish namunalari
1-masala. Bizga X , Y topologik fazolar va A X , B Y kompakt to‘plamlar bo‘lsa, A B to’g’ri ko‘paytma ham X Y fazoda kompakt to‘plam bo‘lishini isbotlang.

Yechish. Avval (x, y) x qoida bilan aniqlangan pr : X Y X akslantirish(proeksiya)da yopiq to‘plamning aksi yopiq to‘plam ekanligini ko‘rsatamiz.

Buning uchun F to‘plam X Y ko‘paytmaning yopiq qism to‘plami bo‘lsin deb faraz qilaylik. Bu F to‘plamning obrazi pr (F ) ning X topologik fazoda yopiq to‘plam ekanligini ko‘rsatish uchun uning to‘ldiruvchisi G X \ pr( F ) ning ochiq to‘plam ekanligini ko‘rsatish kerak. Avval olingan F to‘plamdan x0G nuqta olamiz. Bu nuqta uchun ( x0 ,Y ) X Y \ F munosabat bajariladi. X Y \ F ochiq to‘plam ekanligidan ixtiyoriy y Y uchun ( x0 , y) juftlik birorta U ( x0 , y) V y ( x0 ) V y atrofi bilan X Y \ F to‘plamda yotadi. Bu yerda V y ( x0 ) to‘plam x0 nuqtaning X topologik fazodagi atrofi bo‘lib, u V y ( x0 ) G munosabatni qanoatlantiradi. Demak, G ochiq to‘lpamdir. Bundan esa pr (F ) to‘plamning yopiq to‘plam ekanligi kelib chiqadi.



Endi, agar  U  oila A B to‘plamning ochiq qobig’i bo‘lsa, undan A B uchun chekli qobiq ajratish mumkinligini isbotlash kerak. Har bir uchun U U U ko‘rinishda bo‘ladi. Bu yerda U X U Y ochiq to‘plamlardir. Birorta x A nuqta uchun {x}B ni qaraylik. {x}B to‘plam B ga gomeomorf bo‘lgani uchun kompakt to‘plamdir. Shuning uchun oiladan {x}B uchun chekli qobiq ajratish mumkin. to`plamlar {x}B uchun dan ajratilgan chekli qobiq bo`lsa, ochiq to`plam bo`lganligi uchun uning

to`ldiruvchisi Fx X Y \ Gx yopiq to`plamdir. Yuqorida isbotlaganimizga ko‘ra, prFx yopiq to`plamdir. Ax to`plam prFx to‘plamning to‘ldiruvchisi bo‘lsa, u Ax B Gx munosabatni qanoatlantiradi. Demak, oila uchun ham qobiqdan ajralgan chekli qobiqdir. Endi {Ax : x A} oila A to‘plam uchun qobiq va A kompakt bo‘lgani uchun undan A uchun chekli qobiq ajratish mumkin. Bu oiladan A uchun ajralgan chekli qobiq to‘plamlardan iborat bo‘lsin. Demak, Biroq, har bir Axi B uchun dan chekli qobiq ajratish mumkin. Lekin, bo‘lganligi uchun dan A B uchun ham chekli qobiq ajratish mumkin. Demak, A B kompakt to‘plamdir.


Download 50,3 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish