Kombinatorika



Download 53,96 Kb.
bet2/6
Sana15.04.2022
Hajmi53,96 Kb.
#554303
1   2   3   4   5   6
Bog'liq
14 Kombinatorika asoslari. “kaptar uyasi” prinsipi. Urinalmashtirishlar va kombinatsiyalar. Rekurent munosabatlar.

Qo‘shish qoidasi : Agar biror  tanlovni m() usulda,  tanlovni esa m() usulda amalga oshirish mumkin bo‘lsa va bu yerda  tanlovni ixtiyoriy tanlash usuli  tanlovni ixtiyoriy tanlash usulidan farq qilsa, u holda « yoki » tanlovni amalga oshirish usullari soni
m( ёки ) = m() +m()
formula bilan topiladi.
Masala: Korxonada 10 erkak va 8 ayol xodim ishlaydi. Shu korxonadan bitta xodimni nеcha xil usulda tanlab olish mumkin?
Yechish:  - erkak xodimni tanlash,  - ayol xodimni tanlash bo‘lsin. Unda, shartga ko‘ra, m()=10, m()=8 bo‘lgani uchun bitta xodimni
m( yoki ) = m() + m( ) = 10+8 = 18
usulda tanlash mumkin.
Ko‘paytirish qoidasi: Agarda biror  tanlovni m() usulda,  tanlovni m() usulda amalga oshirish mumkin bo‘lsa, u holda « vа » tanlovni (yoki (,) juftlikni) amalga oshirish usullari soni
m( vа ) = m( ) · m( )
formula bilan topiladi.
Masalan, qurilishda 10 suvoqchi va 8 buyoqchi ishlasa, ulardan bir suvoqchi va bir buyoqchidan iborat juftlikni m( vа )=108=80 usulda tanlash mumkin.
Masala: 10 talabadan iborat guruhga ikkita yo‘llanma berildi. Bu yo‘llanmalarni nеcha xil usulda tarqatish mumkin?
Yechish:  I yo‘llanmani,  esa II yo‘llanmani tarqatishni ifodalasin. Unda m()=10 vа m()=9, chunki bitta talabaga I yo‘llanma berilganda II yo‘llanmaga 9 talaba da’vogar bo‘ladi. Demak, ikkita yo‘llanmani tarqatishlar soni m( vа ) = =109=90 bo‘ladi.
Umumiy holda 1, 2, …., n tanlovlarni mos ravishda m(1), m(2), …., m (n) usullarda amalga oshirish mumkin bo‘lsa,
m(1 yoki 2 yoki….yoki n ) = m(1)+ m( 2 )+…+m(n), (1)
m(1 vа 2 vа…. vа n ) = m(1)  m( 2 ) … m(n) (2)
formulalar o‘rinli bo‘ladi.
3.2. O‘rin almashtirishlar. Kombinatorik masalalarni yechishda keng qo‘llaniladigan tushunchalar bilan tanishishni boshlaymiz.
3–TA‘RIF: Chekli va n ta elеmеntdan iborat to‘plamning barcha elеmеntlarini faqat joylashish tartibini o‘zgartirib qism to‘plam hosil qilish n elementli o‘rin almashtirish dеb ataladi.
Berilgan n ta elementdan tashkil topadigan o‘rin almashtirishlar soni Рn kabi belgilanadi.
TEOREMA: n ta elementdan o‘rin almashtirishlar soni
Рn= n! (3)
formula bilan hisoblanadi.
Bu yerda n! - “en faktorial” deb o‘qiladi va n! = 1  2  3 … n kabi aniqlanadi. Bunda 0! = 1 dеb olinadi. Masalan, 3!=1·2·3=6, 4!= 1·2·3·4=24. Faktoriallarni hisoblashda (n+1)!=n!· (n+1) tenglikdan foydalanish qulay. Masalan, 5!=4!·5=120 bo‘ladi.
Isbot: Bu formulani isbotlash uchun quyidagi tanlovlarni kiritamiz:
αk={o‘rin almashtirishning k-elementini tanlash}, k=1,2,3,……, n.
O‘rin almashtirishning 1-elementi sifatida to‘plamdagi n ta elementdan ixtiyoriy bittasini olishimiz mumkin va shu sababli m(α1)=n bo‘ladi. 2-element sifatida to‘plamdagi qolgan n–1 ta element orasidan ixtiyoriy bittasini tanlab olishimiz mumkin bo‘lgani uchun m(α2)=n–1. Xuddi shunday tarzda birin-ketin m(α3)=n–2, m(α4)=n–3,…, m(αn–1)=n–(n–2)=2, m(αn)=n–(n–1)=1 ekanligini topamiz. Unda, ko‘paytirish qoidasini ifodalovchi (2) formulaga asosan,
Pn= m(1 vа 2 vа…. vа n ) = m(1)  m( 2 ) … m(n)=n(n–1)  … 21=n! .
Masalan, n = 3 elementli {a,b,c} to‘plamdan hosil bo‘ladigan o‘rin almashtirishlar {a,b,c}, {b,a,c}, {a,c,b} {b ,c,a}, {c ,b,a}, {c,a,b} bo‘lib, ularning soni Р3=6=3!.

Download 53,96 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish