Keywords: object detection, Convolutional Neural Network (cnn), You Only Look Once (yolo), Faster r-cnn (Region-based Convolutional Neural Networks, ssd



Download 1,47 Mb.
bet7/8
Sana18.04.2022
Hajmi1,47 Mb.
#561971
1   2   3   4   5   6   7   8
Bog'liq
YOLO

Object detection using deep learning and neural networks has taken some massive leaps in the past couple of years, and the field is very popular at the moment. Every month someone releases a new research paper, a new algorithm or a new solution for a certain problem. It is just the basic and primary idea that I have discussed and carried my research on. Logo recognition is a key problem in marketing analytics, digital advertising, and augmented reality. The purpose of this paper was to create a real-time logo detection system for android mobile using YOLOv2. I have trained the model on the FlickrLogos-32 dataset and experiment results to show that YOLOv2 performs very well in real-time logo detection. By performing a comprehensive analysis of YOLOv2 over FlickrLogos-32 dataset, we found that the experiment result showed that we managed to achieve a final mean average precision (mAP) 82.53 % and 30-35 FPS (frames per second) speed on an NVIDIA GeForce Gtx 1070 and our models performed well at the detection, with very low false-positive rates possible for a fairly reasonably. The application runs smoothly on the current test hardware. However, the main part of the goal was successfully implemented, a working application that utilizes a neural network model for object detection.


References
  1. Fehérvári, I., & Appalaraju, S. (2019, January). Scalable logo recognition using proxies. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 715-725). IEEE.

  2. Garg, A., Will, T., Darling, W., Richert, W., & Marschner, C. (2017). Scalable Object Detection for Stylized Objects. arXiv preprint arXiv:1711.09822.

  3. Prince, S. J. (2012). Computer vision: models, learning, and inference. Cambridge University Press.

  4. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

  5. Bianco, S., Buzzelli, M., Mazzini, D., & Schettini, R. (2017). Deep learning for logo recognition. Neurocomputing, 245, 23-30.


  6. Download 1,47 Mb.

    Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish