Как был открыт элемент



Download 280,5 Kb.
bet10/14
Sana24.02.2022
Hajmi280,5 Kb.
#208292
TuriКурсовая
1   ...   6   7   8   9   10   11   12   13   14
Bog'liq
Курсовая работа - Хром и его соединения. 2 курс.

Дихромат аммония (NH4)2Cr2O7. Оранжево-красные моноклинные кристаллы. Плотность равна 2,15 г/см3. Устойчив на воздухе. Растворяется в воде и спирте. Разлагается при нагревании с образованием азота, оксида хрома (III) и воды.
Известны галогениды, соответствующие разным степеням окисления хрома. Синтезированы дигалогениды хрома CrF2, CrCl2, CrBr2 и CrI2 и тригалогениды CrF3, CrCl3, CrBr3 и CrI3. Однако, в отличие от аналогичных соединений алюминия и железа, трихлорид CrCl3 и трибромид CrBr3 хрома нелетучи.
Среди тетрагалогенидов хрома устойчив CrF4, тетрахлорид хрома CrCl4 существует только в парах. Известен гексафторид хрома CrF6.
Получены и охарактеризованы оксигалогениды хрома CrO2F2 и CrO2Cl2.
Синтезированы соединения хрома с бором (бориды Cr2B, CrB, Cr3B4, CrB2, CrB4 и Cr5B3), с углеродом (карбиды Cr23C6, Cr7C3 и Cr3C2), c кремнием (силициды Cr3Si, Cr5Si3 и CrSi) и азотом (нитриды CrN и Cr2N) [12].

Таблица 12. Свойства некоторых соединений хрома.




Соединение

Сингония

Параметры решетки, им

Т.пл., °С

Плотн., г/см3

CHобр кДж/моль

а

b

с

Сr2В

Ромбич.

1,471

0,741

0,425

1870

6,07

_

Сr5В3

Тетрагон.

0,546



1,064

1890"

6,03



СrВ

Ромбич.

0,2969

0,7858

0.2932

2090

6,17



Сr3В4

"

0,2986

1,302

0,2952

2070

5,22



СrВ2

Гексагон.

0,2969

_

0,3066

2200

5,6

-125,6

CrB4

Ромбич.

0,4744

0,5477

ОД866

1600б

_

_

Сr23С6

Кубич.

1,0638

_

_

1520

7,0

-209,4

Сr7С3

Гексагон.

1,398



0,4532

1780

6,9

-178

Сr3С2

Ромбич.

0,2821

0,552

1,146

1895

6,68

-88

Cr3Si

Кубич.

0,4564





1770



-138

Cr5Si3

Тетрагон.

0,9178



0,4659

1680

5,5

-327

CrSi

Кубич.

0,4629

_

_

1475a

5,37

-71

CrSi2

Гексагон.

0,4422



0,6351

1490




-101

Cr2N

Гексагон.

0,4806



0,4479

1650

6,5

-128,6

CrN

Кубич.

0,4148





1500б

5,8

-123,4

а
Инконгруэнтно. бС разложением.
Хром является хорошим комплексообразователем. Подробно изучена одна из реакций медленного образования комплекса:
Cr(H2О)63+ + NCS- → Cr(H2O)5NCS2+ + H2O
Изучено большое число реакций трисоксалатохроь(III)-иона [Cr(C2O4)3]3-
[Cr(C2O4)3]3- + 2H2O→ [Cr(C2O4)2(H2O)2]- 2O42-
Реакции идут в такой последовательности [15]:
[Cr(C2O4)3]3- + H3O+→[Cr(C2O4)2(OC2O3H)(H2O)]2-
[Cr(C2O4)2(OC2O3H)(H2O)]2- + H2O→ [Cr(C2O4)2(H2O)2]- + HС2O42-
[Cr(C2O4)2(OC2O3H)(H2O)]2- + H3O+ → [Cr(C2O4)2(H2O)2]- + H2С2O4
Реакция быстро достигает равновесия. Для хрома известен и такой комплекс: [Cr(H2О)4Cl2]Cl – дихлортетраквохром (III) хлорид [8].
Широко были исследованы обычные комплексы – нейтральные ацетилацетонаты, внутрикомплексное кольцо образует квазиароматическую систему, и могут быть осуществлены такие реакции, как галогенирование, нитрование и ацетилирование, например:

H 3C H3C


C O C O

H C Cr(acac)2 Br2, B Br C Cr(acac)2 +HBr , CHCl3


C O C O
H3C H3C

где acac – анион ацетилацетона.



Вывод. Хром интересен своими свойствами не только как элемент, но и как металл, чистый или участвующий в образовании соединений. Электронная конфигурация [Ar] 3d5 4s1. Химически хром довольно инертен вследствие образования на его поверхности прочной тонкой пленки оксида. Известны соединения двухвалентного, трехвалентного, четырехвалентного и шестивалентного хрома.

Распространение в природе


Среднее содержание хрома в земной коре (кларк) 8,3•10-3% . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены хромом (2•10-4%). Хром никогда не встречается в свободном состоянии. В хромовых рудах практическое значение имеет только хромит FeCr2O4, относящийся к шпинелям – изоморфным минералам кубической системы с общей формулой МО•Ме2О3, где М – ион двухвалентного металла, а Ме – ион трехвалентного металла. Шпинели могут образовывать друг с другом твердые растворы, поэтому в природе отдельно или в качестве примесей к хромиту встречаются также магнохромит (MgFe)Cr2O4, алюмохромит Fe(CrAl)2O4, хромпикотит (MgFe)(CrAl)2O4 – все они относятся к классу хромшпинелидов. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO•2Cr2O3, вокелените 2(PbCu)CrO4(PbCu)3(PO4)2, тарапакаите K2CrO4, дитцеите CaIO3•CaCrO4 и других.
Хромиты окрашены в темный или почти черный цвет, имеют металлический блеск и обычно залегают в виде сплошных массивов. Месторождения хромита имеют магматическое происхождение. Его выявленные ресурсы оценены в 47 странах мира и составляют 15 миллиардов тонн.
Первое место по запасам хромита занимает ЮАР (76% от разведанных мировых запасов), где наибольшее значение имеет группа Бушвельдских месторождений, содержание хромовой руды в которых составляет 1 миллиард тонн. Второе место в мире по ресурсам хромита занимает Казахстан (9% от мировых запасов), хромовые руды там очень высокого качества. Все ресурсы хромита в Казахстане сосредоточены в Актюбинской области (Кемпирсайский массив с запасами 300 млн. тонн); месторождения разрабатываются с конца 1930-х. Третье место занимает Зимбабве (6% от мировых запасов). Кроме того, значительными ресурсами хромита обладают США, Индия, Филиппины, Турция, Мадагаскар, Бразилия. В России довольно крупные залежи хромита встречаются на Урале (Сарановское, Верблюжьегорское, Алапаевское, Монетная дача, Халиловское и другие месторождения).
Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений хрома. В основных породах содержание хрома достигает лишь 2•10-2%, в кислых - 2,5•10-3%, в осадочных породах (песчаниках) - 3,5•10-3%, глинистых сланцах - 9•10-3% . Концентрируется в хромовых рудах (хромититах), главный минерал – хромшпинелид (FeMg)2(CrFeAl)3O4. Хром – сравнительно слабый водный мигрант; содержание рома в морской воде 0,00005 мг/л. Суммарное содержание солей, растворенных в морской воде – 32640 г/л [5]. В этой связи на хром приходится 0,15•10-6 % по массе.
Вывод. Среднее содержание хрома в земной коре (кларк) 8,3•10-3% . Хромиты окрашены в темный или почти черный цвет, имеют металлический блеск и обычно залегают в виде сплошных массивов. Месторождения хромита имеют магматическое происхождение.


Получение


Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа), представляющий собой шпинель, в которой Cr(III) занимает октаэдрические пустоты, а Fe(II) – тетраэдрические. Из него получают феррохром восстановлением в электропечах коксом (углеродом):
FeO • Cr2O3 + 4C → Fe + 2Cr + 4CO↑
Чтобы получить чистый хром, реакцию ведут следующим образом:
1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:
4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2
2) растворяют хромат натрия и отделяют его от оксида железа;
3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;
4) получают чистый оксид хрома восстановлением дихромата углём:
Na2Cr2O7 + 2C → Cr2O3 + Na2CO3 + CO↑
5) с помощью алюминотермии получают металлический хром:
Cr2O3+ 2Al → Al2O3 + 2Cr + 130 ккал
6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:
• восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
• разряд ионов водорода с выделением газообразного водорода;
• разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;
Cr2O72− + 14Н+ + 12ē → 2Cr + 7H2O
Определение температуры плавления чистого хрома представляет собой чрезвычайно трудную задачу, так как малейшие примеси кислорода или азота существенно влияют на величину этой температуры. По результатам современных измерений она равняется 1907°С. Температура кипения хрома 2671°С. Совершенно чистый (без газовых примесей и углерода) хром довольно вязок, ковок и тягуч. При малейшем загрязнении углеродом, водородом, азотом и т.д. становится хрупким, ломким и твердым.
В зависимости от требуемой степени чистоты металла существует несколько промышленных способов получения хрома.
Возможность алюмотермического восстановления оксида хрома(III) была продемонстрирована еще Фридрихом Вёлером в 1859, однако в промышленном масштабе этот метод стал доступен, как только появилась возможность получения дешевого алюминия. Промышленное алюмотермическое получение хрома началось с работ Гольдшмидта, которому впервые удалось разработать надежный способ регулирования сильно экзотермического (а, следовательно, взрывоопасного) процесса восстановления:
Cr2O3 + 2Al → 2Cr + 2Al2O3.
Предварительно смесь равномерно прогревается до 500-600° С. Восстановление можно инициировать либо смесью перекиси бария с порошком алюминия, либо запалом небольшой порции шихты с последующим добавлением остального количества смеси. Важно, чтобы выделяющейся в процессе реакции теплоты, хватило на расплавление образующегося хрома и его отделение от шлака. Хром, получающийся алюмотермическим способом, обычно содержит 0,015–0,02% С, 0,02% S и 0,25–0,40% Fe, а массовая доля основного вещества в нем составляет 99,1–99,4% Cr. Он очень хрупок и легко размалывается в порошок.
При получении высокочистого хрома используются электролитические методы, возможность этого в 1854 году показал Бунзен, подвергший электролизу водный раствор хлорида хрома. Сейчас электролизу подвергают смеси хромового ангидрида или хромоаммонийных квасцов с разбавленной серной кислотой. Выделяющийся в процессе электролиза хром содержит растворенные газы в качестве примесей. Современные технологии позволяют получать в промышленном масштабе металл чистотой 99,90–99,995% с помощью высокотемпературной очистки в потоке водорода и вакуумной дегазации. Уникальные методики рафинирования электролитического хрома позволяют избавляться от кислорода, серы, азота и водорода, содержащихся в «сыром» продукте.
Есть еще несколько менее значимых способов получения металлического хрома. Силикотермическое восстановление основано на реакции:
2Cr2O3 + 3Si + 3CaO → 4Cr + 3CaSiO3.
Восстановление кремнием, хотя и носит экзотермический характер, требует проведения процесса в дуговой печи. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция.
Восстановление оксида хрома(III) углем применяется для получения высокоуглеродистого хрома, предназначенного для производства специальных сплавов. Процесс также ведется в электродуговой печи.
В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома(III) на нагретой до 1100°С проволоке с осаждением на ней чистого металла.
Хром можно также получать восстановлением Cr2O3 водородом при 1500°С, восстановлением безводного CrCl3 водородом, щелочными или щелочноземельными металлами, магнием и цинком [12].
Сегодня общий объем потребления чистого хрома (не менее 99% Cr) составляет около 15 тысяч тонн, из них около трети приходится на электролитический хром. Мировым лидером в производстве высокочистого хрома является английская фирма Bell Metals. Первое место по объемам потребления занимают США (50%), второе – страны Европы (25%), третье – Япония. Рынок металлического хрома довольно нестабилен, и цены на металл колеблются в широком диапазоне.
Сейчас в мире ежегодно добывается 11–14 миллионов тонн хромитов. Ведущее место по добыче хромовой руды занимает ЮАР (около 6 млн. тонн ежегодно), за ней следует Казахстан, обеспечивая 20% мировых потребностей. Из-за большой глубины залегания хромовой руды ее обычно добывают шахтным способом (85%), но иногда практикуется и открытая (карьерная) добыча, например, в Финляндии и на Мадагаскаре. Обычно добываемые руды относятся к категории достаточно качественных и нуждаются только в механической сортировке. Часто обогащать хромиты нецелесообразно, так как при этом можно повысить только содержание Cr2O3, а отношение Fe/Cr остается без изменения. Цена хромита на мировом рынке колеблется в пределах 40–120 долларов США за тонну.
Вывод. Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Чтобы получить чистый хром, реакцию ведут следующим образом: сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе, растворяют хромат натрия и отделяют его от оксида железа; переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат; получают чистый оксид хрома восстановлением дихромата углём, с помощью алюминотермии получают металлический хром, с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты.

Download 280,5 Kb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   14




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish