Агенты, основанные на цели
Знаний о текущем состоянии среды не всегда достаточно для принятия решения о том, что делать. Например, на перекрестке дорог такси может повернуть налево, повернуть направо или ехать прямо. Правильное решение зависит от того, куда должно попасть это такси. Иными словами, агенту требуется не только описание текущего состояния, но и своего рода информация о цели, которая описывает желаемые ситуации, такие как доставка пассажира в место назначения. Программа агента может комбинировать эту информацию с информацией о результатах возможных действий (с такой же информацией, как и та, что использовалась при обновлении внутреннего состояния рефлексного агента) для выбора действий, позволяющих достичь этой цели. Структура агента, действующего на основе цели, показана на рис. 2.5.
Иногда задача выбора действия на основе цели решается просто, когда достижение цели немедленно становится результатом единственного действия, а иногда эта задача становится более сложной, и агенту требуется рассмотреть длинные последовательности движений и поворотов, чтобы найти способ достижения цели. Подобластями искусственного интеллекта, посвященными выработке последовательностей действий, позволяющих агенту достичь его целей, являются поиск и планирование.
Агенты, основанные на полезности
В действительности в большинстве вариантов среды для выработки высококачественного поведения одного лишь учета целей недостаточно. Например, обычно существует много последовательностей действий, позволяющих такси добраться до места назначения (и тем самым достичь поставленной цели), но некоторые из этих последовательностей обеспечивают более быструю, безопасную, надежную или недорогую поездку, чем другие. Цели позволяют провести лишь жесткое бинарное различие между состояниями “удовлетворенности” и “неудовлетворенности”, тогда как более общие показатели производительности должны обеспечивать сравнение различных состояний мира в точном соответствии с тем, насколько удовлетворенным станет агент, если их удастся достичь. Поскольку понятие “удовлетворенности” представляется не совсем научным, чаще применяется терминология, согласно которой состояние мира, более предпочтительное по сравнению с другим, рассматривается как имеющее более высокую полезность для агента.
Функция полезности отображает состояние (или последовательность состояний) на вещественное число, которое обозначает соответствующую степень удовлетворенности агента. Полная спецификация функции полезности обеспечивает возможность принимать рациональные решения в описанных ниже двух случаях, когда этого не позволяют сделать цели. Во-первых, если имеются конфликтующие цели, такие, что могут быть достигнуты только некоторые из них (например, или скорость, или безопасность), то функция полезности позволяет найти приемлемый компромисс. Во-вторых, если имеется несколько целей, к которым может стремиться агент, но ни одна из них не может быть достигнута со всей определенностью, то функция полезности предоставляет удобный способ взвешенной оценки вероятности успеха с учетом важности целей.
Структура агента, действующего с учетом полезности, показана на рис. 2.6. Программы агентов, действующих с учетом полезности, приведены в части V, которая посвящена проектированию агентов, принимающих решения, способных учитывать неопределенность, свойственную частично наблюдаемым вариантам среды.
Рис. 1.5. Агент, основанный на модели и на цели. Он следит за состоянием мира, а также за множеством целей, которых он пытается достичь, и выбирает действие, позволяющее (в конечном итоге) добиться достижения этих целей
Do'stlaringiz bilan baham: |