Radiatsiya
Radiatsion issiqlik uzatish - bu
issiqlik nurlanishi
, ya'ni
elektromagnit to'lqinlar
orqali
energiyaning uzatilishi .
[1]
U
vakuumda
yoki har qanday
shaffof muhitda
(
qattiq
yoki
suyuqlik
yoki
gaz
) sodir bo'ladi.
[14]
Issiqlik nurlanishi barcha jismlar tomonidan
mutlaq noldan
yuqori
Issiqlikni issiqlik nurlanishi orqali atrof-muhitga o'tkazadigan qizil-issiq temir ob'ekt
haroratlarda , moddadagi atomlar va molekulalarning tasodifiy harakati tufayli chiqariladi. Ushbu
atomlar va molekulalar zaryadlangan zarrachalardan (
protonlar
va
elektronlar
) tashkil
topganligi sababli, ularning harakati
elektromagnit nurlanishning tarqalishiga olib keladi.
energiya
olib ketadi. Radiatsiya odatda juda issiq ob'ektlar yoki katta harorat farqi bo'lgan ob'ektlar
uchun muhandislik dasturlarida muhim ahamiyatga ega.
Ob'ektlar va ularni ajratib turadigan masofalar katta hajmga ega bo'lsa va termal nurlanishning
to'lqin uzunligi bilan taqqoslaganda,
nurlanish energiyasini uzatish tezligi Stefan-Boltzmann
tenglamasi
bilan eng yaxshi tavsiflanadi . Vakuumdagi ob'ekt uchun tenglama:
Ikki ob'ekt o'rtasida
radiatsiya uzatish
uchun tenglama quyidagicha:
qayerda
issiqlik
oqimi
,
emissivlik ( qora tana
uchun birlik ),
Stefan -
Boltzman doimiysi
,
a va b ikkita sirt orasidagi ko'rish omili, [
15
]
va
va ikki ob'ekt uchun mutlaq haroratlar (
kelvin
yoki
Rankine darajalarida ).
Stefan-Boltzman tenglamasi
bilan belgilangan qora tan chegarasi , agar termal nurlanishni
almashtiruvchi ob'ektlar yoki ularni ajratib turadigan masofalar miqyosda taqqoslansa yoki
dominant termal to'lqin uzunligidan
kichikroq bo'lsa, oshib ketishi mumkin . Ushbu holatlarni
o'rganish deyiladi
yaqin maydon radiatsion issiqlik uzatish
.
Quyoshdan radiatsiya yoki quyosh radiatsiyasi issiqlik va quvvat uchun yig'ib olinishi mumkin.
[16]
Issiqlik uzatishning o'tkazuvchan va konvektiv shakllaridan farqli o'laroq, termal nurlanish - tor
burchak ostida, ya'ni masofasidan ancha kichikroq manbadan keladi -
quyosh energiyasini
konsentratsiyalashda
qo'llaniladigan aks ettiruvchi oynalar yordamida kichik nuqtada to'planishi
mumkin. avlod yoki
yonayotgan shisha
.
[17]
Masalan, nometalldan aks ettirilgan quyosh nuri
PS10 quyosh energiyasi minorasini
isitadi va kun davomida u suvni 285 °C (545 °F) ga qizdira
oladi.
[18]
Nishonga erishish mumkin bo'lgan harorat issiq nurlanish manbasining harorati bilan cheklangan.
(T
4
qonuni radiatsiyaning teskari oqimining manbaga qaytishiga imkon beradi.) (Uning yuzasida)
bir oz 4000 K issiq
quyosh
3000 K (yoki 3000 ° C, bu taxminan 3273 K) ga erishishga imkon
beradi. Frantsiyadagi
Mont-Lui quyosh pechining
katta konkav, kontsentratsion oynasi fokus
nuqtasidagi kichik zond .
[19]
Phase transition
or phase change, takes place in a
thermodynamic system
from one phase or
state of matter
to another one by heat transfer. Phase change examples are the melting of
ice or the boiling of water. The
Mason equation
explains the growth of a water droplet based
on the effects of heat transport on
evaporation
and condensation.
Phase transitions involve the
four fundamental states of matter
:
Solid
– Deposition, freezing and solid to solid transformation.
Gas
– Boiling / evaporation,
recombination
/
deionization
, and
sublimation
.
Liquid
– Condensation and
melting / fusion
.
Plasma
–
Ionization
.
Boiling
Fazali o'tish
Lightning
is a highly visible form of
energy
transfer and is an example of plasma present at Earth's surface. Typically,
lightning discharges 30,000 amperes at up to 100 million volts, and emits light, radio waves, X-rays and even gamma
rays.
[20]
Plasma temperatures in lightning can approach 28,000 kelvins (27,726.85 °C) (49,940.33 °F) and electron
densities may exceed 10
24
m
−3
.
The
boiling point
of a substance is the temperature at which the
vapor pressure
of the liquid
equals the pressure surrounding the liquid
[21][22]
and the liquid
evaporates
resulting in an abrupt
change in vapor volume.
In a
closed system
, saturation temperature and boiling point mean the same thing. The
saturation temperature is the temperature for a corresponding saturation pressure at which a
liquid boils into its vapor phase. The liquid can be said to be saturated with thermal energy.
Any addition of thermal energy results in a phase transition.
At standard atmospheric pressure and low temperatures, no boiling occurs and the heat
transfer rate is controlled by the usual single-phase mechanisms. As the surface temperature
is increased, local boiling occurs and vapor bubbles nucleate, grow into the surrounding cooler
fluid, and collapse. This is sub-cooled nucleate boiling, and is a very efficient heat transfer
mechanism. At high bubble generation rates, the bubbles begin to interfere and the heat flux
no longer increases rapidly with surface temperature (this is the
departure from nucleate
boiling
, or DNB).
At similar standard atmospheric pressure and high temperatures, the hydrodynamically-
quieter regime of
film boiling
is reached. Heat fluxes across the stable vapor layers are low,
but rise slowly with temperature. Any contact between fluid and the surface that may be
seen probably leads to the extremely rapid nucleation of a fresh vapor layer ("spontaneous
nucleation
"). At higher temperatures still, a maximum in the heat flux is reached (the
critical
heat flux
, or CHF).
The
Leidenfrost Effect
demonstrates how nucleate boiling slows heat transfer due to gas
bubbles on the heater's surface. As mentioned, gas-phase thermal conductivity is much lower
than liquid-phase thermal conductivity, so the outcome is a kind of "gas thermal barrier".
Nucleate boiling of water.
Do'stlaringiz bilan baham: |