Investments, tenth edition


The Index Model and Diversification



Download 14,37 Mb.
Pdf ko'rish
bet377/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   373   374   375   376   377   378   379   380   ...   1152
Bog'liq
investment????

  The Index Model and Diversification 

 The index model, first suggested by Sharpe,  

4

   also offers insight into portfolio diversifica-



tion. Suppose that we choose an equally weighted portfolio of  n  securities. The excess rate 

of return on each security is given by 

   R

i

5 a


i

1 b


i

R

M

e



i

 

 Suppose that the index model for the excess 



returns of stocks  A  and  B  is estimated with the 

following results:

     R

A

5 1.0% 1 .9R



M

e



A

 

R



B

5 22.0% 1 1.1R



M

e



B

 s

M

5 20%

 s(


e

A

)

5 30%



 s(

e

B

)

5 10%



  

 Find the standard deviation of each stock and 

the covariance between them. 

 CONCEPT CHECK 



8.2 

  

4



 William F. Sharpe, “A Simplified Model of Portfolio Analysis,”  Management Science,  January 1963. 

bod61671_ch08_256-290.indd   262

bod61671_ch08_256-290.indd   262

6/21/13   4:10 PM

6/21/13   4:10 PM

Final PDF to printer




  C H A P T E R  

8

 Index 



Models 

263


Similarly, we can write the excess return on the portfolio of stocks as

 

   R



P

5 a


P

1 b


P

R

M

e



P

 

 (8.11)  



We now show that, as the number of stocks included in this portfolio increases, the part of 

the portfolio risk attributable to nonmarket factors becomes ever smaller. This part of the 

risk is diversified away. In contrast, market risk remains, regardless of the number of firms 

combined into the portfolio. 

 To understand these results, note that the excess rate of return on this equally weighted 

portfolio, for which each portfolio weight  w  

 i 

   5  1/ n,   is

    R

P

5 a


n

i

51

w



i

R

i

5

1



n

a

n



i

51

R



i

5

1



n

a

n



i

51

(a



i

1 b


i

R

M

e



i

)

 



 

5

1



n

a

n



i

51

a



i

1 a


1

n

a

n



i

51

b



i

bR



M

1

1



n

a

n



i

51

e



i

 

 (8.12)   



 Comparing Equations 8.11 and 8.12, we see that the portfolio has a sensitivity to the 

market given by

 

   b


P

5

1



n

a

n



i

51

b



i

 

 (8.13)  



which is the average of the individual  b  

 i 

  s.  It has a nonmarket return component of

 

   a



P

5

1



n

a

n



i

51

a



i

 

 (8.14)  



which is the average of the individual alphas, plus the zero mean variable

 

   e



P

5

1



n

a

n



i

51

e



i

 

 (8.15)  



which is the average of the firm-specific components. Hence the portfolio’s variance is

 

   s



P

2

5 b



P

2

s



M

2

1 s



2

(e



P

 (8.16)   



 The systematic risk component of the portfolio variance, which we defined as the compo-

nent that depends on marketwide movements, is    b



P

2

s



M

2

  and depends on the sensitivity coef-



ficients of the individual securities. This part of the risk depends on portfolio beta and    s

M

2

   and 



will persist regardless of the extent of portfolio diversification. No matter how many stocks 

are held, their common exposure to the market will be reflected in portfolio systematic risk.  

5

    


 In contrast, the nonsystematic component of the portfolio variance is  s  

2

 ( e  



 P 

 ) and is 

attributable to firm-specific components,  e  

 i 

 . Because these  e  

 i 

 s are independent, and all 

have zero expected value, the law of averages can be applied to conclude that as more and 

more stocks are added to the portfolio, the firm-specific components tend to cancel out, 

resulting in ever-smaller nonmarket risk. Such risk is thus termed  diversifiable.  To see this 

more rigorously, examine the formula for the variance of the equally weighted “portfolio” 

of firm-specific components. Because the  e  

 i 

 s are uncorrelated,

 

s

2



(e

P

)

5 a



n

i

51

a



1

b

2

s



2

(e



i

)

5



1

n

 

s



2

(e)  



 (8.17)   

 where  s

2

(e)   is the average of the firm-specific variances. Because this average is indepen-



dent of  n,  when  n  gets large,  s  

2

 ( e  



 P 

 ) becomes negligible. 

  

5

 One can construct a portfolio with zero systematic risk by mixing negative  b  and positive  b  assets. The point of 



our discussion is that the vast majority of securities have a positive  b , implying that well-diversified portfolios 

with small holdings in large numbers of assets will indeed have positive systematic risk. 

bod61671_ch08_256-290.indd   263

bod61671_ch08_256-290.indd   263

6/21/13   4:10 PM

6/21/13   4:10 PM

Final PDF to printer



264

P A R T   I I

  Portfolio Theory and Practice

 To summarize, as diversification increases, the total variance of a portfolio approaches 

the systematic variance, defined as the variance of the market factor multiplied by the 

square of the portfolio sensitivity coefficient,    b



P

2

.  This is shown in  Figure 8.1 .  



  Figure 8.1  shows that as more and more securities are combined into a portfolio, the 

portfolio variance decreases because of the diversification of firm-specific risk. However, 

the power of diversification is limited. Even for very large  n,  part of the risk remains 

because of the exposure of virtually all assets to the com-

mon, or market, factor. Therefore, this systematic risk is 

said to be nondiversifiable. 

 

 This analysis is borne out by empirical evidence. We 



saw the effect of portfolio diversification on portfolio 

standard deviations in Figure 7.2. These empirical results 

are similar to the theoretical graph presented here in 

 Figure 8.1 .    




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   373   374   375   376   377   378   379   380   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish