Investments, tenth edition


A. Bordered Covariance Matrix



Download 14,37 Mb.
Pdf ko'rish
bet323/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   319   320   321   322   323   324   325   326   ...   1152
Bog'liq
investment????

A. Bordered Covariance Matrix

Portfolio Weights

w

D

w

E

w

D

Cov(r



D

r



D

)

Cov(r



D

r



E

)

w



E

Cov(r



E

r



D

)

Cov(r



E

r



E

)

B. Border-Multiplied Covariance Matrix



Portfolio Weights

w

D

w

E

w

D

w

D

w

D

Cov(r



D

r



D

)

w



D

w

E

Cov(r



D

r



E

)

w



E

w

E



w

D

Cov(r



E

r



D

)

w



E

w

E

Cov(r



E

r



E

)

w



D

 1 w



E

 5 1


w

D

w

D

Cov(r



D

r



D

) 1 w



E

w

D

Cov(r



E

r



D

)     w



D

w

E

Cov(r



D

r



E

) 1 w



E

w

E

Cov(r



E

r



E

)

Portfolio variance



w

D

w

D

Cov(r



D

r



D

) 1 w



E

w

D

Cov(r



E

r



D

) 1 w



D

w

E

Cov(r



D

r



E

) 1 w



E

w

E

Cov(r



E

r



E

)

 Table 7.2 

 Computation of 

portfolio variance 

from the covariance 

matrix 


    a.  First confirm for yourself that our simple rule for computing the variance of a two-asset portfolio from 

the bordered covariance matrix is consistent with Equation 7.3.  



   b.  Now consider a portfolio of three funds,  X, Y, Z,  with weights  w  

 X 

 ,  w  

 Y 

 , and  w  

 Z 

 . Show that the portfolio 

variance is   

w

X

2

s



X

2

w



Y

2

s



Y

2

w



Z

2

s



Z

2

1 2w



X

w

Y

 Cov(r

X

, r

Y

)

1 2w



X

w

Z

 Cov(r

X

, r

Z

)

1 2w



Y

w

Z

 Cov(r

Y

, r

Z

)    


 CONCEPT CHECK 

7.1 

bod61671_ch07_205-255.indd   209

bod61671_ch07_205-255.indd   209

6/18/13   8:11 PM

6/18/13   8:11 PM

Final PDF to printer




210 

P A R T   I I

  Portfolio Theory and Practice

 Equation 7.3 reveals that variance is reduced if the covariance term is negative. It is 

important to recognize that even if the covariance term is positive, the portfolio standard 

deviation  still  is less than the weighted average of the individual security standard devia-

tions, unless the two securities are perfectly positively correlated. 

 To see this, notice that the covariance can be computed from the correlation coefficient, 

 r  

 DE 



 ,  as   

 Cov(r



D

r



E

) 5 r


DE 

s

D

s

E

 

 (7.6)  



Therefore,   

 

s



p

2

w



D

2

s



D

2

w



E

2

s



E

2

1 2w



D

w

E

s

D

s

E

r

DE

 

 (7.7)  


Other things equal, portfolio variance is higher when  r  

 DE 

  is higher. In the case of perfect 

positive correlation,  r  

 DE 

   5  1, the right-hand side of Equation 7.7 is a perfect square and 

simplifies  to   

 

s



p

2

5 (w



D

s

D

w

E

s

E

)

2

 



 (7.8)  

or   


 

s

p

w

D

s

D

w

E

s

E

 

 (7.9)  


Therefore, the standard deviation of the portfolio with perfect positive correlation is just 

the weighted average of the component standard deviations. In all other cases, the cor-

relation coefficient is less than 1, making the portfolio standard deviation  less  than the 

weighted average of the component standard deviations. 

 A hedge asset has  negative  correlation with the other assets in the portfolio. Equation 

7.7 shows that such assets will be particularly effective in reducing total risk. Moreover, 

Equation 7.2 shows that expected return is unaffected by correlation between returns. 

Therefore, other things equal, we will always prefer to add to our portfolios assets with low 

or, even better, negative correlation with our existing position. 

 

Because the portfolio’s expected return is the weighted average of its component 



expected returns, whereas its standard deviation is less than the weighted average of the 

component standard deviations,  portfolios of less than perfectly correlated assets always 



offer some degree of diversification benefit.  The lower the correlation between the assets

the greater the gain in efficiency. 

 How low can portfolio standard deviation be? The lowest possible value of the correla-

tion coefficient is  2 1, representing perfect negative correlation. In this case, Equation 7.7 

simplifies  to   

 

s



p

2

5 (w



D

s

D

w

E

s

E

)

2

 



 (7.10)  

and the portfolio standard deviation is   

 

s

p



5 Absolute value (w

D

s

D

w

E

s

E

 (7.11)  



When  r   5   2 1, a perfectly hedged position can be obtained by choosing the portfolio pro-

portions to solve   



w

D

s

D

w

E

s

E

5 0 

The solution to this equation is   



w

D

5

s



E

s

D

1 s

E

 

w



E

5

s



D

s

D

1 s

E

5 1 2 w



D

 

 



(7.12)

   


bod61671_ch07_205-255.indd   210

bod61671_ch07_205-255.indd   210

6/18/13   8:11 PM

6/18/13   8:11 PM

Final PDF to printer



  C H A P T E R  

7

  Optimal Risky Portfolios 



211

 These weights drive the standard deviation of the portfolio to zero. 

 

 We can experiment with different portfolio proportions to observe the effect on portfo-



lio expected return and variance. Suppose we change the proportion invested in bonds. The 

effect on expected return is tabulated in  Table 7.3  and plotted in  Figure 7.3 . When the pro-

portion invested in debt varies from zero to 1 (so that the proportion in equity varies from 

1 to zero), the portfolio expected return goes from 13% (the stock fund’s expected return) 

to 8% (the expected return on bonds).   

 What happens when  w  

 D 

  . 1 and  w  

 E 

  , 0? In this case portfolio strategy would be to sell 

the equity fund short and invest the proceeds of the short sale in the debt fund. This will 

decrease the expected return of the portfolio. For example, when  w  

 D 

   5  2 and  w  

 E 

   5   2 1, 

expected portfolio return falls to 2  3  8  1  ( 2 1)  3  13  5  3%. At this point the value of the 

bond fund in the portfolio is twice the net worth of the account. This extreme position is 

financed in part by short-selling stocks equal in value to the portfolio’s net worth. 

 Table 7.3 

 Expected return 

and standard 

deviation with 

various correla-

tion coefficients 



Portfolio Standard Deviation for Given Correlation

w

D

w

E

E(r

P

)

r

 5 21

r

 5 0

r

 5 .30

r

 5 1

0.00


1.00

13.00


20.00

20.00


20.00

20.00


0.10

0.90


12.50

16.80


18.04

18.40


19.20

0.20


0.80

12.00


13.60

16.18


16.88

18.40


0.30

0.70


11.50

10.40


14.46

15.47


17.60

0.40


0.60

11.00


 7.20

12.92


14.20

16.80


0.50

0.50


10.50

 4.00


11.66

13.11


16.00

0.60


0.40

10.00


 0.80

10.76


12.26

15.20


0.70

0.30


 9.50

 2.40


10.32

11.70


14.40

0.80


0.20

 9.00


 5.60

10.40


11.45

13.60


0.90

0.10


 8.50

 8.80


10.98

11.56


12.80

1.00


0.00

 8.00


12.00

12.00


12.00

12.00



Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   319   320   321   322   323   324   325   326   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish