Investments, tenth edition


An Example of a Pure Play



Download 14,37 Mb.
Pdf ko'rish
bet1108/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   1104   1105   1106   1107   1108   1109   1110   1111   ...   1152
Bog'liq
investment????

   An Example of a Pure Play 

 Suppose you manage a $1.4 million portfolio. You believe that the alpha of the portfolio 

is positive,  a  . 0, but also that the market is about to fall, that is, that  r  

 M 

  , 0. You  would 

therefore try to establish a pure play on the perceived mispricing. 

 The return on portfolio over the next month may be described by Equation 26.1, which 

states that the portfolio return will equal its “fair” CAPM return (the first two terms on the 

right-hand side), plus firm-specific risk reflected in the “residual,”  e,  plus an alpha that 

reflects perceived mispricing:

 

   r



portfolio

r



f

1 b(r



M

r



f

)

1 a  



(26.1)   

 To be concrete, suppose that  b     5   1.20,   a     5   .02,   r  

 f 

      5  .01, the current value of the 

S&P 500 index is  S  

0

   5  1,344, and, for simplicity, that the portfolio pays no dividends. You 



want to capture the positive alpha of 2% per month, but you don’t want the positive beta 

that the stock entails because you are worried about a market decline. So you choose to 

hedge your exposure by selling S&P 500 futures contracts. 

 Because the S&P contracts have a multiplier of $250, and the portfolio has a beta of 

1.20, your stock position can be hedged for 1 month by selling five futures contracts:  

3

  



 

   


Hedge ratio

5

$1,400,000



1,344

3 $250


3 1.20 5 5 contracts 

    26.3 

Portable Alpha  

  

3



 We simplify here by assuming that the maturity of the futures contract precisely equals the hedging horizon, in 

this case, 1 month. If the contract maturity were longer, one would have to slightly reduce the hedge ratio in a 

process called “tailing the hedge.” 

bod61671_ch26_926-950.indd   931

bod61671_ch26_926-950.indd   931

7/25/13   2:04 AM

7/25/13   2:04 AM

Final PDF to printer




932 

P A R T   V I I

  Applied Portfolio Management

  A warning: Even market-neutral positions are still bets, and they can go wrong. This 

is not true arbitrage because your profits still depend on whether your analysis (your per-

ceived alpha) is correct. Moreover, you can be done in by simple bad luck, that is, your 

analysis may be correct but a bad realization of idiosyncratic risk (negative values of  e   in 

Equation 26.1 or 26.2) can still result in losses.   

The dollar value of the stock portfolio after 1 month will be   

 $1,400,000

3 (1 1 r

portfolio

)

5 $1,400,000 31 1 .01 1 1.20 (r



M

2 .01) 1 .02 1 e4

 

5 $1,425,200 1 $1,680,000 3 r



M

1 $1,400,000 3 e 

The dollar proceeds from your futures position will be:   

5 3 $250 3 (F

0

 2 F



1

Mark to market on 5 contracts sold



5 $1,250 3 [S

0

 (1.01) 2 S



1

Substitute for futures prices from parity relationship



5 $1,250 3 S

0

 [1.01 2 (1 1 r



M

)] Because 



S

1

 5 S



0

 (1 1 r



M

) when no dividends are paid

5 $1,250 3 [S

(.01 2 r



M

)] Simplify

5 $16,800 2 $1,680,000 3 r

M

 Because 



S

0

 5 1,344



   The total value of the stock plus futures position at month’s end will be the sum of the 

portfolio value plus the futures proceeds, which equals   

 Hedged 

proceeds 

5 $1,442,000 1 $1,400,000 3 e  

(26.2)  


Notice that the exposure to the market from your futures position precisely offsets your 

exposure from the stock portfolio. In other words, you have reduced beta to zero. Your 

investment is $1.4 million, so your total monthly rate of return is 3% plus the remain-

ing nonsystematic risk (the second term of Equation 26.2). The fair or equilibrium 

expected rate of return on such a zero-beta position is the risk-free rate, 1%, so you 

have preserved your alpha of 2%, while eliminating the market exposure of the stock 

portfolio. 

 This is an idealized example of a pure play. In particular, it simplifies by assuming a 

known and fixed portfolio beta, but it illustrates that the goal is to speculate on the stock 

while hedging out the undesired market exposure. Once this is accomplished, you can 

establish any desired exposure to other sources of systematic risk by buying indexes or 

entering index futures contracts in those markets. Thus, you have made alpha portable. 

  Figure 26.1  is a graphical analysis of this pure play. Panel A shows the excess returns to 

betting on a positive-alpha stock portfolio “naked,” that is, unhedged. Your  expected   return 

is better than an equilibrium return given your risk, but because of your market exposure 

you still can lose if the market declines. Panel B shows the characteristic line for the posi-

tion with systematic risk hedged out. There is no market exposure. 

 What would be the dollar value and rate of return on the market-neutral posi-

tion if the value of the residual turns out to be  2 4%? If the market return in that 

month is 5%, where would the plot of the strategy return lie in each panel of 

 Figure 26.1 ? 

 CONCEPT CHECK 



26.2 

bod61671_ch26_926-950.indd   932

bod61671_ch26_926-950.indd   932

7/25/13   2:04 AM

7/25/13   2:04 AM

Final PDF to printer




  C H A P T E R  

2 6


 Hedge 

Funds 


933

 Even market-neutral bets can result in considerable volatility because most hedge funds 

use considerable leverage. Most incidents of relative mispricing are fairly minor, and 

the hedged nature of long-short strategies makes overall volatility low. The hedge funds 

respond by scaling up their bets. This amplifies gains when their bets work out, but also 

amplifies losses. In the end, the volatility of the funds is not small.    

Return on Positive Alpha Portfolio

Return for Fairly Priced Assets

Alpha = 2%

Excess Market Returnr



M

 

− r



f

Excess Rate of Return, r



p

 

− r



f

α = 2%


Characteristic line of your hedged (

β = 0) portfolio is flat

Characteristic line of fairly priced zero-beta asset

Total Market Return, r



M

Total Return on Hedged Portfolio

← α = 2%

r

f

 

= 1%



3%


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   1104   1105   1106   1107   1108   1109   1110   1111   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish