Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet442/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   438   439   440   441   442   443   444   445   ...   1152
Bog'liq
investment????

 Example  10.2 

Risk Assessment Using Multifactor Models 

bod61671_ch10_324-348.indd   327

bod61671_ch10_324-348.indd   327

6/21/13   3:43 PM

6/21/13   3:43 PM

Final PDF to printer



328 

P A R T   I I I

  Equilibrium in Capital Markets

   Arbitrage, Risk Arbitrage, and Equilibrium 

 An     arbitrage    opportunity arises when an investor can earn riskless profits without  making 

a net investment. A trivial example of an arbitrage opportunity would arise if shares of a 

stock sold for different prices on two different exchanges. For example, suppose IBM sold 

for $195 on the NYSE but only $193 on NASDAQ. Then you could buy the shares on 

NASDAQ and simultaneously sell them on the NYSE, clearing a riskless profit of $2 per 

share without tying up any of your own capital. The    Law of One Price    states that if two 

assets are equivalent in all economically relevant respects, then they should have the same 

market price. The Law of One Price is enforced by arbitrageurs: If they observe a violation 

of the law, they will engage in  arbitrage activity —simultaneously buying the asset where it 

is cheap and selling where it is expensive. In the process, they will bid up the price where 

it is low and force it down where it is high until the arbitrage opportunity is eliminated. 

 The idea that market prices will move to rule out arbitrage opportunities is perhaps the 

most fundamental concept in capital market theory. Violation of this restriction would indi-

cate the grossest form of market irrationality. 

 The critical property of a risk-free arbitrage portfolio is that any investor, regardless of 

risk aversion or wealth, will want to take an infinite position in it. Because those large posi-

tions will quickly force prices up or down until the opportunity vanishes, security prices 

should satisfy a “no-arbitrage condition,” that is, a condition that rules out the existence of 

arbitrage opportunities. 

 There is an important difference between arbitrage and risk–return dominance argu-

ments in support of equilibrium price relationships. A dominance argument holds that 

when an equilibrium price relationship is violated, many investors will make limited port-

folio changes, depending on their degree of risk aversion. Aggregation of these limited 

portfolio changes is required to create a large volume of buying and selling, which in turn 

restores equilibrium prices. By contrast, when arbitrage opportunities exist, each inves-

tor wants to take as large a position as possible; hence it will not take many investors to 

bring about the price pressures necessary to restore equilibrium. Therefore, implications 

for prices derived from no-arbitrage arguments are stronger than implications derived from 

a risk–return dominance argument. 

 The CAPM is an example of a dominance argument, implying that all investors hold 

mean-variance efficient portfolios. If a security is mispriced, then investors will tilt their 

portfolios toward the underpriced and away from the overpriced securities. Pressure on 

equilibrium prices results from many investors shifting their portfolios, each by a relatively 

small dollar amount. The assumption that a large number of investors are mean-variance 

optimizers is critical. In contrast, the implication of a no-arbitrage condition is that a few 

investors who identify an arbitrage opportunity will mobilize large dollar amounts and 

quickly restore equilibrium. 

 Practitioners often use the terms  arbitrage  and  arbitrageurs  more loosely than our strict 

definition. Arbitrageur often refers to a professional searching for mispriced securities in 

specific areas such as merger-target stocks, rather than to one who seeks strict (risk-free) 

arbitrage opportunities. Such activity is sometimes called    risk  arbitrage    to distinguish it 

from pure arbitrage. 

 To leap ahead, in Part Four we will discuss “derivative” securities such as futures and 

options, whose market values are determined by prices of other securities. For example, 

the value of a call option on a stock is determined by the price of the stock. For such secu-

rities, strict arbitrage is a practical possibility, and the condition of no-arbitrage leads to 

exact pricing. In the case of stocks and other “primitive” securities whose values are not 

determined strictly by another bundle of assets, no-arbitrage conditions must be obtained 

by appealing to diversification arguments.  

bod61671_ch10_324-348.indd   328

bod61671_ch10_324-348.indd   328

6/21/13   3:43 PM

6/21/13   3:43 PM

Final PDF to printer



  C H A P T E R  

1 0


  Arbitrage Pricing Theory and Multifactor Models of Risk and Return 

329



Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   438   439   440   441   442   443   444   445   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish