Infinite system of 2-systems of differential equations in Hilbert space Ibragimov G. I., Qushaqov H. Sh. Abstract



Download 251,78 Kb.
bet5/6
Sana23.01.2022
Hajmi251,78 Kb.
#405763
1   2   3   4   5   6

0.4 Conclusion


In this paper, a theorem on the existence and uniqueness of the solution of an infinite system of 2-systems of differential equations (0.1.4) in Hilbert space has been proved. We can write the infinite system in the form

where the infinite matrix is a block diagonal matrix consisted of matrices



This system of differential equations has been studied in this paper for the first time. We have proved the existence and uniqueness of the solution of an infinite system of 2-systems in the space . Clearly, is of the form of a Jordan block.

In the papers [13], [2] matrix in the following form was studied

and in [8] the case where



was studied, before. Then, control and differential game problems were studied based on the existence and uniqueness theorem infinite system. Such problems can be now studied for the infinite 2-systems (0.1.4) in the cases of integral and geometric constraints on controls of players. Therefore, the main result of the present paper is interesting for the researchers who do research on control or differential game problems for infinite system of differential equations.




Download 251,78 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish