Infinite system of 2-systems of differential equations in Hilbert space Ibragimov G. I., Qushaqov H. Sh. Abstract



Download 251,78 Kb.
bet4/6
Sana23.01.2022
Hajmi251,78 Kb.
#405763
1   2   3   4   5   6

0.3 Main Part

We denote the space of continuous functions , , by . The following theorem is the main result of the present paper.


Theorem 3.1 If , and , , then there exists a unique solution of the infinite system of differential equations (0.1.4) in the space .

Proof. Obviously, each 2-system of the infinite system (0.1.4) has the unique solution which is given by the equation

(0.3.1)

where , . Therefore, system (0.1.4) can’t have more than one solution in the space .

Next, we show that . To prove the this we need to show that for each , , and that , , is continuous in the norm of the space . The proof that for each . We have from (0.3.1) that

(0.3.2)

By utilizing the relations from Property 2.1.




and in view of the Cauchy-Schwartz inequality we obtain



We have then




Hence,



and so, for each .



The proof that the function , , is continuious. We show that, for any positive , there exists such that whenever . Indeed, for , using Property 2.1. we have






Utilizing the inequality yields








Then,

where






where is a positive integer which will be chosen below.

Since and by item (iii) of Property 2.1. , we obtain



Since the series



are convergent, for any positive number , we can choose the positive integer such that .

Next, we evaluate . From , we obtain



(0.3.3)
By Property 2.1. as for each . Since the expression on the right hand side of (0.3.3) has finite number of terms, we can choose such that whenever .

To evaluate , we use the Cauchy-Schwartz inequality to obtain




Clearly, we can choose such that whenever . Therefore, can be done less than any given positive number by choosing .

Now, we consider , . Then







identical to the estimation of we can establish that for any positive number , there exists number such that whenever . Therefore, . This completes the proof of the theorem.




Download 251,78 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish