Ikki va uch o'lchovli integralni hisoblash Birinchi va ikkinchi tur egri chiziqli integrallarning ta’rifi, ularning xossalari va ularni hisoblash


Ta`rif: kompleks son deb ma`lum bir tartibda berilgan bir juft va haqiqiy sonlarga aytiladi va quyidagicha yoziladi



Download 0,66 Mb.
bet20/20
Sana07.07.2022
Hajmi0,66 Mb.
#753566
1   ...   12   13   14   15   16   17   18   19   20
Bog'liq
Ikki va uch o\'lchovli integralni hisoblash

Ta`rif: kompleks son deb ma`lum bir tartibda berilgan bir juft va haqiqiy sonlarga aytiladi va quyidagicha yoziladi: .
Yoki ko`rinishidagi songa ham kompleks son deyilib, bu kompleks sonning algebraik ko`rinishi deyiladi. Bunda va haqiqiy sonlar mos ravishda kompleks sonning haqiqiy va mavhum qismi deb yuritiladi va quyidagicha simvol bilan belgilanadi: , (Realis va Imaginarius – lotincha so`zlar bo`lib, haqiqiy va mavhum demakdir)
Ushbu va ko`rinishidagi sonlar o`zaro qo`shma kompleks sonlar deyiladi. – mavhum birlik bo`lib, Shuning uchun: , , ,
Kompleks sonlar ustida amallar
Agar α=a+ib va β=c+id kompleks sonlar berilgan bo`lsa:

  1. Qo`shish va ayirish.

α±β=(a+ib)±(c+id)=(a±c)+i(b±d)

  1. Ko`paytirish va bo`lish


Agar va o`zaro qo`shma sonlar berilgan bo`lsa: ,
Kompleks sonning geometrik tasviri va kompleks tekislik
T o`g`ri burchakli Dekart koordinatalar sistemasi ni tanlab, uning abssissalar o`qiga ning haqiqiy qismi x ni, ordinatalar o`qiga esa mavhum qismining koeffitsienti y ni joylashtirsak, tekislikda nuqtaga ega bo`lamiz.
Kompleks sonning trigonometrik va ko`rsatkichli shakli:

Bundagi kompleks sonni tasvirlagan vektorning uzunligini ifodalaydi, uni sonning moduli, burchakni esa ning argumenti deyiladi va u quyidagicha yoziladi: , kompleks songa mos bo`lgan vektorga birgina uzunlik va cheksiz ko`p burchaklar mos kelishi chizmadan ko`rinadi: Shu sababli odatda burchakning umumiy ko`rinishi kabi belgilanib , ni argumentning bosh qiymati deyiladi.
Download 0,66 Mb.

Do'stlaringiz bilan baham:
1   ...   12   13   14   15   16   17   18   19   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish