Umumiy qo’yilgan Koshi masalasi
Ikkinchi tartibli xususiy hosilalariga nisbatan chiziqli bo‘lgan ushbu
(1)
tenglamani biror D sohada qaraylik.
Faraz qilaylik, D sohada silliqlanuvchi, chekli uzunlikdagi va parametrik tenglamalari , , bo’lgan L egri chiziq berilgan va bu egri chiziq ( 1) tenglamaning xarakteristikasi bo’lmasin.
Bu yerda s orqali L egri chiziq yoyhiing, l orqali esa L egri chiziqning uzunligi belgilangan.
Koshi masalasi.
Xususiy hosilali (1) differensial tenglamaning L egri chiziq atrofida aniqlangan, uzluksiz va quyidagi
(2)
boshlang‘ich shartlarni qanoatlantiruvchi u(x, y) yechimini toping. Bu yerda va berilgan yetarlicha silliq funksiyalar, N esa L egri chiziqqa o‘tkazilgan normal.
Xususiy hosilali differensial tenglamalar uchun qo‘yilgan Koshi masalasi matematik fizikaning muhim masalalaridan biri hisoblanadi. Uni tadqiq etish ilmiy va amaliy ahamiyatga ega.
Giperbolik tipdagi bir o’lchovli tenglamani sonli yechish haqida umumiy tushuncha.
Chiziqli giperbolik tipdagi tenglama uchun boshlang’ich chegaraviy masalalar yechimlarining integral ifodasini olish uchun kerakli bo’lgan ayrim yordamchi formulalarni keltiramiz.
Faraz qilaylik,
(1)
chiziqli giperbolik tenglamaga mos differensial operator bo’lsin.
Bu yerda a(x,y),b(x,y) va c(x,y) qaralayotgan operatorning koeffitsiyentlari, biror sohada berilgan funksiyalar bo’lib, ular a(x,y), b(x,y) va c(x,y) bo’lsin.
operatorni biror v(x,y) funksiyaga ko’paytiramiz va buning uchun quydagi ayniyat o’rinli:
(2)
Bu yerda
(3)
va
.
(3) formula bilan aniqlangan operator operatorga qo’shma operator deyiladi.
Agar ayirmani biror H va K ifodalarning mos ravishda x va y o’zgaruvchilar bo’yicha xususiy hosilalarining yig’indisi ko’rinishida ifodalash mumkin bo’lsa, u holda ikkita va differensial operatorlar o’zaro qo’shma operatorlar deyiladi.
Agar = bo’lsa u holda o’z-o’ziga qo’shma operator deyiladi.
tekislikda S bo’lakli silliq chiziq bilan bilan chegaralangan soha D bo’lsin. Endi (2) ayniyatni D sohada integrallaymiz va unga matematik analiz kursidan ma’lum bo’lgan Grin formulasini qo’llaymiz.
Natijada
(4)
Ifodaga ega bo’lamiz. Bu formula ham ikki o’lchovli Grin formulasi deyiladi.
Riman usuli.Nemis matematigiR.Riman chiziqli giperbolik tipdagi tenglamalar uchun Koshi va Gursa masalalarining yechimini qurish usulini tavsiya qilgan.
Quyidagi Koshi masalasini qaraylik. Koshi masalasi.Yopiq sohada aniqlangan, uzluksiz va
, (5)
Funksiyalar sinfiga tegishli
(6)
Tenglamaning quyidagi
(7)
Shartlarni qanoatlantiruvchi u(x,y) yechimini toping. Bu yerda a(x,y), b(x,y) – uzluksiz va birinchi tartibli hosilalarga ega, c(x,y) va f(x,y) - uzluksiz funksiyalar, - berilgan funksiyalar, n esa egri chiziqqa o’tkazilgan normal.
Ma’lumki, (6) tenglamaga mos xarakteristik tenglama bo’lib, to’g’ri chiziqlar tenglamaning xarakteristikalari bo’ladi.
Do'stlaringiz bilan baham: |