I bob. Taqribiy integrallashda kvadratur formulalar. Taqribiy Integrallash masalasi


Gauss tipidagi kvadratur formula koeffisentlarining xossasi



Download 0,68 Mb.
bet10/13
Sana17.07.2022
Hajmi0,68 Mb.
#817977
1   ...   5   6   7   8   9   10   11   12   13
Bog'liq
Davriy funksiyalarni integrallash

1. Gauss tipidagi kvadratur formula koeffisentlarining xossasi. Gauss tipidagi kvadratur formulaning barcha koeffisentlari musbatdir. Haqiqatdan ham, 2n-2 darajali

ko’phad uchun quyidagi tengliklar bajarilishi ayondir. Bu ko’phad uchun Gauss tipidagi formula aniqdir:

Bundan:
(2.2.4)
O’z navbatida bundan barcha larning musbatligi kelib chiqadi.
2. Gauss tipidagi kvadratur formulaning qoldiq hadi:
Teorema 3. Agar [a,b] oraliqda f(x) funksiya 2n-tartibli uzluksiz hosilaga ega bo’lsa, u holda shunday nuqta topiladiki, Gauss tipidagi kvadratur formulaning qoldiq hadi

uchun quyidagi tenglik o’rinlidir:


(2.2.5)
Gauss kvadratur formulasining qoldiq hadi:

Gauss kvadratur formula bilan tanishdik, endi bu formulani Mathcad dasturida yechimini ko’ramiz.




2.3 Davriy funksiyalarni integrallash.


Bu paragrafda davrli funksiyalarni taqribiy integrallash masalasini ko’ramiz.Bu yerda tabiiyki, kvadratur formulaning aniqlik darajasi algebraik ko’phadga emas, balki trigonometrik ko’phadga nisbatan qaraladi.
Agar ushbu kvadratur formula
(2.3.1)
ixtiyoriy tartibli trigonometrik ko’phadlar uchun aniq bo’lib, birorta - tartibli trigonometrik ko’phad uchun aniq bo’lmasa, u holda bu formulaning trigonometrik aniqlik darajasi (tartibi) ga teng deyiladi.
Teorema. tugunli kvadratur formulalar to’plamida tugunlari oraliqda tekis joylashgan va koeffisentlari o’zaro teng bo’lgan kvadratur formula eng yuqori trigonometrik aniqlik tartibiga ega bo’lib, bu tartib ga teng.
Isbot.Avvalo (2.2.2) ko’rinishdagi ixtiyoriy kvadratur formulaning aniqlik darajasi dan ortmasligini ko’rsatamiz.
Kvadratur formulaning tugun nuqtalaridan foydalanib,

funksiyani tuzaylik.Harbirko’paytuvchibirinchitartiblitrigonometrikko’phadbo’lganiuchun, - tartibliko’phaddir.Buko’phaduchun (2.2.2) formulaaniqemas, chunki

va

Demak, tugunli kvadratur formulaning trigonometrik aniqlik tartibi dan ortmaydi. Endi ixtiyoriy uchun ushbu
, (2.3.2)
kvadratur formula barcha

funksiyalar uchun aniq ekanini ko’rsatamiz.Buning uchun uning barcha

funksiyalar uchun aniq ekanini ko’rsatish kifoyadir.Agar bo’lsa, bo’lib, (2.2.3) formula aniq ekani ravshandir. Endi bo’lsin. U holda
.
Shu bilan birga kvadratur yigindi ham nolga teng:

Shunday qilib, (2.2.3) formulaning trigonometrik aniqlik tartibi ga teng ekan.
Ixtiyoriy uchun
, (2.3.3)
kvadratur formulaning - tartibli ixtiyoriy

trigonometrik ko’phad uchun aniq tenglikka aylanishini ko’rsatish qiyin emas.
Misol sifatida ushbu

to’liq elliptik integralning dagi qiymatini to’rt xona aniqlikda hisoblaylik. Integral ostidagi funksiya juft va davrli bo’lganligi sababli ni

ko’rinishdayozishmumkin. Buintegralnihisoblashuchun (2.2.5)da debolamiz.Endi deb olib, tugunlarni nuqtaga nisbatan simmetrik ravishda joylashtiramiz:

U holda

ning jadvaldagi qiymati 1,6858. Demak, xato 0,0042ga teng.

Download 0,68 Mb.

Do'stlaringiz bilan baham:
1   ...   5   6   7   8   9   10   11   12   13




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish