I bob. Differensial tenglamalar haqida umumiy tushuncha



Download 188,04 Kb.
bet8/12
Sana17.07.2022
Hajmi188,04 Kb.
#817225
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
1DIFFERENSIAL TENGLAMALAR NORMAL SISTEMASINIG BIRINCHI INTEGRALI

2.2. Runge-Kutta usullari.
Yuqorida tavsiflangan Eylerning oshkor va oshkormas usullari bir qadamli usullar sinfiga kiradi. Bu usullarning bunday deb atalishining sababi bu formulalar toʻrning yonma-yon ikkita tugunidagi toʻr yechimlar- ni oʻz ichiga olishi va ularning oldingi tugunda berilgan toʻr yechimdan foydalanib navbatdagi tugundagi toʻr yechimni topish imkonini berishi.
Bir qadamli usullarning yana boshqalari bu Eylerning toʻgʻrilangan va
modifikatsiyalangan usullaridir.
Eylerning toʻgʻrilangan usulida avvalo oldingi qadamdagi yi ning qiymati yuqorida tavsiflangan ushbu

(1) differensial tenglamaning y(i) va ȳ(i+1) yechimlarining (xi,yi) va (xi+1,ȳi+1) nuqtalar orqali oʻtuvchi mos grafiklarini chizamiz, bunda ȳi+1 ning qiymati (56) formula boʻyicha hisobla- nadi, 1, 2 lar orqali esa koʻrsatilgan nuqtalarda shu grafiklarga oʻtkazilgan
urinmalarning x oʻq bilan tashkil


10-rasm.

qilgan mos burchaklarini belgilaymiz. Keyin esa (xi,yi) nuqta orqali x oʻq bilan burchak tashkil etuvchi shunday l toʻgʻri chiziq oʻtkazamizki, un- ing burchak koeffisiyenti, yaʼni tangensi 1, 2 burchaklar tangenslarining oʻrta arifmetigiga teng boʻlsin
10-izoh. Eylerning toʻgʻrilangan usuli holida yi+1 yechimni topish uchun izlanayotgan yechimning [xi,xi+1] kesmadagi grafigi Eylerning osh- kor usulidagi kabi (xi,yi) nuqtadan oʻtuvchi boʻlagi bilan almashtiriladi. Ammo bu boʻlakning qiyaligini tanlash ancha mushkul, chunki Eylerning oshkor usuli yordamida (xi,yi) nuqtaga qoʻshimcha ravishda (xi+1,ȳi+1) nuqta ham quriladi va bu qiya chiziqning absissa oʻqi bilan hosil qilgan burchagi tangensi deb berilgan differensial tenglamaning shu nuqtalardan oʻtuvchi yechimlari grafiklariga oʻtkazilgan urinmalarning absissa oʻqi bilan hosil qilgan burchaklari tangenslarining oʻrta arifmetigi olinadi.
Yana bir bor taʼkidlaymizki, bu burchaklarning oʻzlari emas, balki ularning tangenslari oʻrtalashtiriladi.

Download 188,04 Kb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish