Local limit theorem



Download 128,5 Kb.
bet2/3
Sana02.01.2022
Hajmi128,5 Kb.
#312001
1   2   3
Bog'liq
Local limit theorem

Lindeberg–Lévy CLT. Suppose {\textstyle \{X_{1},\ldots ,X_{n}\}}  is a sequence of i.i.d. random variables with {\textstyle \mathbb {E} [X_{i}]=\mu }  and {\textstyle \operatorname {Var} [X_{i}]=\sigma ^{2}<\infty } . Then as {\textstyle n}  approaches infinity, the random variables {\textstyle {\sqrt {n}}({\bar {X}}_{n}-\mu )}  converge in distribution to a normal {\textstyle {\mathcal {N}}(0,\sigma ^{2})} :[4]

{\displaystyle {\sqrt {n}}\left({\bar {X}}_{n}-\mu \right)\ \xrightarrow {d} \ {\mathcal {N}}\left(0,\sigma ^{2}\right).}

In the case {\textstyle \sigma >0} , convergence in distribution means that the cumulative distribution functionsof {\textstyle {\sqrt {n}}({\bar {X}}_{n}-\mu )}  converge pointwise to the cdf of the {\textstyle {\mathcal {N}}(0,\sigma ^{2})}  distribution: for every realnumber {\textstyle z} ,



{\displaystyle \lim _{n\to \infty }\mathbb {P} \left[{\sqrt {n}}({\bar {X}}_{n}-\mu )\leq z\right]=\lim _{n\to \infty }\mathbb {P} \left[{\frac {{\sqrt {n}}({\bar {X}}_{n}-\mu )}{\sigma }}\leq {\frac {z}{\sigma }}\right]=\Phi \left({\frac {z}{\sigma }}\right),}

where {\textstyle \Phi (z)}  is the standard normal cdf evaluated at {\textstyle z} . The convergence is uniform in {\textstyle z}  in the sense that



{\displaystyle \lim _{n\to \infty }\;\sup _{z\in \mathbb {R} }\;\left|\mathbb {P} \left[{\sqrt {n}}({\bar {X}}_{n}-\mu )\leq z\right]-\Phi \left({\frac {z}{\sigma }}\right)\right|=0~,}

where {\textstyle \sup }  denotes the least upper bound (or supremum)of the set

Let {\textstyle \{X_{1},\ldots ,X_{n}\}}  be a random sample of size {\textstyle n}  — that is, a sequence of independent and identically distributed (i.i.d.) random variables drawn from a distribution of expected value given by {\textstyle \mu }  and finite variance given by {\textstyle \sigma ^{2}} . Suppose we are interested in the sample average

{\displaystyle {\bar {X}}_{n}\equiv {\frac {X_{1}+\cdots +X_{n}}{n}}}

of these random variables. By the law of large numbers, the sample averages converge almost surely (and therefore also converge in probability) to the expected value {\textstyle \mu }  as {\textstyle n\to \infty } . The classical central limit theorem describes the size and the distributional form of the stochastic fluctuations around the deterministic number {\textstyle \mu }  during this convergence. More precisely, it states that as {\textstyle n}  gets larger, the distribution of the difference between the sample average {\textstyle {\bar {X}}_{n}}  and its limit {\textstyle \mu } , when multiplied by the factor {\textstyle {\sqrt {n}}}  (that is {\textstyle {\sqrt {n}}({\bar {X}}_{n}-\mu )} ) approximates the normal distribution with mean 0 and variance {\textstyle \sigma ^{2}} . For large enough n, the distribution of {\textstyle {\bar {X}}_{n}}  is close to the normal distribution with mean {\textstyle \mu }  and variance {\textstyle \sigma ^{2}/n} . The usefulness of the theorem is that the distribution of {\textstyle {\sqrt {n}}({\bar {X}}_{n}-\mu )}  approaches normality regardless of the shape of the distribution of the individual {\textstyle X_{i}} . Formally, the theorem can be stated as follows:




Download 128,5 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish