Hodisaning ehtimoli. Ehtimolning klassik, statistik va geometrik ta’riflari. Shartli ehtimol. Reja: Kirish


Ehtimolning klassik ta'rifi. Ehtimollar xususiyatlari



Download 35,87 Kb.
bet2/5
Sana29.06.2022
Hajmi35,87 Kb.
#718135
1   2   3   4   5
Bog'liq
Hodisaning ehtimoli. Ehtimolning klassik, statistik va geometrik

Ehtimolning klassik ta'rifi. Ehtimollar xususiyatlari.

Ehtimollar ehtimollik nazariyasining asosiy tushunchalaridan biridir. Ushbu kontseptsiyaning bir nechta ta'riflari mavjud. Biz klassik deb nomlangan ta'rifni beramiz. Keyinchalik, biz ushbu ta'rifning zaif tomonlarini ko'rsatamiz va klassik ta'rifning kamchiliklarini bartaraf etish uchun boshqa ta'riflarni beramiz.


Bir misolni ko'rib chiqaylik. Qutida 6 ta o'xshash, ehtiyotkorlik bilan aralashtirilgan to'plar bo'lsin, ulardan ikkitasi qizil, 3tasi ko'k va 1tasi oqdir. Shubhasiz, rangli (ya'ni qizil yoki ko'k) to'pni saylov qutisidan olib tashlash qobiliyati oq to'pni olish qobiliyatidan kattaroqdir. Bu xususiyatni raqam bilan tavsiflash mumkinmi? Siz qila olasiz. Ushbu raqam voqea ehtimoli deb nomlanadi (rangli to'pning paydo bo'lishi). Shunday qilib, ehtimollik - bu voqea sodir bo'lish darajasini tavsiflovchi raqam.


Biz o'zimizga tasodifiy olingan to'pning rangli bo'lishi ehtimolini hisoblash vazifasini qo'ydik. A voqea sifatida rangli to'pning paydo bo'lishini ko'rib chiqamiz. Mumkin bo'lgan har bir natija (sinov to'pni saylov qutisidan olib tashlashdan iborat) deb nomlanadi elementar natija (oddiy voqea). Elementar natijalarni w 1, w 2, w 3 va hokazolar bilan belgilaymiz. Bizning misolimizda quyidagi 6 elementar natija mumkin: w 1 - oq to'p paydo bo'ldi; w 2, w 3 - qizil to'p paydo bo'ldi; w 4, w 5, w 6 - ko'k to'p paydo bo'ldi. Ushbu natijalar juftlik mos kelmaydigan hodisalarning to'liq guruhini tashkil etishini ko'rish oson (faqat bitta to'p albatta paydo bo'ladi) va ular bir xil darajada mumkin (to'p tasodifiy ravishda olinadi, to'plar bir xil va yaxshilab aralashtiriladi).
Bizni qiziqtirgan voqea sodir bo'lgan boshlang'ich natijalar deyiladi qulay ushbu tadbirga. Bizning misolimizda quyidagi 5 natijalar A hodisasini (rangli to'pning paydo bo'lishi) ma'qullaydi: w 2, w 3, w 4, w 5, w 6.


2) Ehtimolni, nisbiy chastotani statik aniqlash.

Klassik ta'rif tajribani talab qilmaydi. Haqiqiy amaliy muammolar cheksiz ko'p natijalarga ega va bu holda klassik ta'rif javob berolmaydi. Shuning uchun bunday muammolarda biz foydalanamiz ehtimolliklarni statik aniqlash, bu tajriba yoki tajribadan so'ng hisoblab chiqiladi.


Statik ehtimollik w (A) yoki nisbiy chastota - bu ijobiy natijalar sonining ma'lum bir hodisaga amalda o'tkazilgan sinovlarning umumiy soniga nisbati.


w(A)=nm

Voqeaning nisbiy chastotasi bor barqarorlik xususiyati:




lim n→∞P(∣ ∣ nm−p∣ ∣ <ε)=1


Download 35,87 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish