Handbook of Photovoltaic Science and Engineering


 Equilibrium Carrier Concentrations



Download 12,83 Mb.
Pdf ko'rish
bet61/788
Sana08.06.2022
Hajmi12,83 Mb.
#643538
1   ...   57   58   59   60   61   62   63   64   ...   788
Bog'liq
Photovoltaic science and engineering (1)

3.2.4 Equilibrium Carrier Concentrations
When the semiconductor is in thermal equilibrium (i.e. at a constant temperature with no
external injection or generation of carriers), the Fermi function determines the ratio of
filled states to available states at each energy and is given by
f (E)
=
1
1
+
e
(E

E
F
)/kT
(
3
.
9
)
where
E
F
is the Fermi energy,
k
is Boltzmann’s constant, and
T
is the Kelvin temperature.
As seen in Figure 3.4, the Fermi function is a strong function of temperature. At absolute
zero, it is a step function and all the states below
E
F
are filled with electrons and all
those above
E
F
are completely empty. As the temperature increases, thermal excitation
will leave some states below
E
F
empty, and the corresponding number of states above
E
F
will be filled with the excited electrons.
The equilibrium electron and hole concentrations (#/cm
3
) are therefore
n
o
=

E
C
g
C
(E)f (E)
d
E
=
2
N
C

π
F
1
/
2
((E
F

E
C
)/kT )
(3.10)
p
o
=
E
V
−∞
g
V
(E)
[1

f (E)
] d
E
=
2
N
V

π
F
1
/
2
((E
V

E
F
)/kT )
(3.11)
where
F
1
/
2
(ξ )
is the Fermi–Dirac integral of order 1/2,
F
1
/
2
(ξ )
=

0

ξ
d
ξ
1
+
e
ξ

ξ
(
3
.
12
)
The conduction-band and valence-band effective densities of state (#/cm
3
),
N
C
and
N
V
,
respectively, are given by
N
C
=
2
2
π m

n
kT
h
2
3
/
2
(
3
.
13
)


68
THE PHYSICS OF THE SOLAR CELL
0.0
0.2
0.4
0.6
0.8
1.0

0.4

0.3

0.2

0.1
0.0
0.1
0.2
0.3
0.4
0 K
300 K
400 K
Fermi function
E

E
F
[eV]
Figure 3.4
The Fermi function at various temperatures
and
N
V
=
2
2
π m

p
kT
h
2
3
/
2
.
(
3
.
14
)
When the Fermi energy,
E
F
, is sufficiently far (
>
3
kT
) from either bandedge, the carrier
concentrations can be approximated (to within 2%) as [7]
n
o
=
N
C
e
(E
F

E
C
)/kT
(
3
.
15
)
and
p
o
=
N
V
e
(E
V

E
F
)/kT
(
3
.
16
)
and the semiconductor is said to be
nondegenerate
. In nondegenerate semiconductors, the
product of the equilibrium electron and hole concentrations is independent of the location
of the Fermi energy and is just
p
o
n
o
=
n
2
i
=
N
C
N
V
e
(E
V

E
C
)/kT
=
N
C
N
V
e

E
G
/kT
.
(
3
.
17
)
In an undoped (intrinsic) semiconductor in thermal equilibrium, the number of electrons in
the conduction band and the number of holes in the valence band are equal;
n
o
=
p
o
=
n
i
,
where
n
i
is the intrinsic carrier concentration. The intrinsic carrier concentration can be
computed from (3.17), giving
n
i
=
N
C
N
V
e
(E
V

E
C
)/
2
kT
=
N
C
N
V
e

E
G
/
2
kT
.
(
3
.
18
)


FUNDAMENTAL PROPERTIES OF SEMICONDUCTORS
69
The Fermi energy in an intrinsic semiconductor,
E
i
=
E
F
, is given by
E
i
=
E
V
+
E
C
2
+
kT
2
ln
N
V
N
C
(
3
.
19
)
which is typically very close to the middle of the band gap. The intrinsic carrier concentra-
tion is typically very small compared to the densities of states and typical doping densities
(
n
i

10
10
cm

3
in Si) and intrinsic semiconductors behave very much like insulators;
that is, they are not very useful as conductors of electricity.
The number of electrons and holes in their respective bands, and hence the con-
ductivity of the semiconductor, can be controlled through the introduction of specific
impurities, or dopants, called
donors
and
acceptors
. For example, when semiconductor
silicon is doped with phosphorous, one electron is donated to the conduction band for
each atom of phosphorous introduced. From Table 3.1, it can be seen that phosphorous is
in column V of the periodic table of elements and thus has five valence electrons. Four
of these are used to satisfy the four covalent bonds of the silicon lattice and the fifth is
available to fill an empty state in the conduction band. If silicon is doped with boron
(valency of three, since it is in column III), each boron atom accepts an electron from the
valence band, leaving behind a hole. All impurities introduce additional localized elec-
tronic states into the band structure, often within the forbidden band between
E
C
and
E
V
,
as illustrated in Figure 3.5. If the energy of the state,
E
D
, introduced by a donor atom
is sufficiently close to the conduction bandedge (within a few
kT
), there will be suffi-
cient thermal energy to allow the extra electron to occupy a state in the conduction band.
The donor state will then be positively charged (ionized) and must be considered when
analyzing the electrostatics of the situation. Similarly, an acceptor atom will introduce a
negatively charged (ionized) state at energy
E
A
. The controlled introduction of donor and
acceptor impurities into a semiconductor allows the creation of the
n
-type (electrons are
the primary source of electrical conduction) and
p
-type (holes are the primary source of
electrical conduction) semiconductors, respectively. This is the basis for the construction
of all semiconductor devices, including solar cells. The number of ionized donors and
acceptors are given by [7]
N
+
D
=
N
D
1
+
g
D
e
(E
F

E
D
)/kT
=
N
D
1
+
e
(E
F

E
D
)/kT
(
3
.
20
)
and
N

A
=
N
A
1
+
g
A
e
(E
A

E
F
)/kT
=
N
A
1
+
e
(E
A

E
F
)/kT
(
3
.
21
)
where
g
D
and
g
A
are the donor and acceptor site degeneracy factors. Typically,
g
D
=
2
and
g
A
=
4. These factors are normally combined into the donor and the acceptor energies
so that
E
D
=
E
D

kT
ln
g
D
and
E
A
=
E
A
+
kT
ln
g
A
. Often, the donors and acceptors
are assumed to be completely ionized so that
n
o
N
D
in
n
-type material and
p
o
=
N
A
in
p
-type material. The Fermi energy can then be written as
E
F
=
E
i
+
kT
ln
N
D
n
i
(
3
.
22
)


70
THE PHYSICS OF THE SOLAR CELL
E
C
E
V
Conduction band
E
D
E
A
Valence band
Position

Download 12,83 Mb.

Do'stlaringiz bilan baham:
1   ...   57   58   59   60   61   62   63   64   ...   788




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish