Graflar uning turlari. Daraxtlar. Graflar va ularning turlari



Download 0,76 Mb.
bet5/8
Sana18.12.2022
Hajmi0,76 Mb.
#890512
1   2   3   4   5   6   7   8
Bog'liq
37295 1Graflar maruza

Bog’langan graf

Connected graph

Связанный граф

Grafning ikki uchi bog’langan deyiladi, agar shu uchlarni birlashtiruvchi yo’l bo’lsa. Agar grafning har qanday uchini birlashtiruvchi marshrut mavjud bo’lsa, bunday graf bog’langan graf deyiladi

zanjir

chain

цепь

Barcha qirralari turli bo’lgan (yo’l) marshrut zanjir deb ataladi. Agar zanjir turli uchlardan o’tsa, u oddiy zanjir deb ataladi.




cycle

цикл

Yopiq zanjir “sikl” deb ataladi, turli uchlardan o’tuvchi “sikl”, oddiy “sikl”dir.



daraxt

tree

дерево

Siklga ega bo’lmagan bog’langan graf daraxt deb ataladi, uning qirralari esa shoxlaridir.

O’rmon

forest

лес

Siklsiz bog’lanmagan graf o’rmon deb ataladi.

To’r

net

сеть


S=(G, C) juftlik to’r deb ataladi, Bu yerda G=(X,A) ixtiyoriy orientirlangan (yo’naltirilgan)dir.



Qoplovchi daraxt

Spanning tree

Покрывающее дерево


“mo’ljallanmagan”, “orientirlanmagan”, “yo’naltirilmagan” graf berilgan bo’lsin.
D(Y,J) daraxt grafning qoplovchi daraxti deyiladi, agarda X=Y va J Ening qismi bo’lsa.



Theme: Graphs and trees.


Literature:

  1. Susanna S.Epp. Discrete mathematics with applications fourth edition. 2011,2004,1995Brooks/ColeCengageLearning

  2. Thinking is a momentary dismissal of irrelevancies. — R. Buckminster Fuller, 1969

  3. Victor Adamchik. Graph Theory. Fall of 2005

Graphs and trees have appeared previously in this book asconvenient visualizations. For instance, a possibility tree shows all possible outcomes of a multistep operation with a finite number of outcomes for each step, the directed graph of a relation on a set shows which elements of the set are related to which a Hasse diagram illustrates the relations among elements in a partially orderedset, and a PERTdiagramshows which ta sks mus t precede which in e xecuting a project. In thischapter we present some of the mathematics of graphs and trees, discussing concepts sucha s the degree of a vertex, connectedness,E uler and Hamiltonian circuits, representation of graphs bymatrices,i somorphisms of graphs, the relation between the number of vertices and the number of edges of a tree, properties of rooted treesspan- ning trees, andshortest paths in graphs. Applications include uses of graphs and trees in the study of artificial intelligence, chemistry, scheduling problems, an d transportation systems.


10.1 Graphs: Definitions and Basic Properties
The whole of mathematics consists in the organization of a series of aids to the imagination in the process of reasoning. — Alfred North Whitehead, 1861–1947
Imagine an organization that wants to set up teams of three to work on some projects. In order to maximize the number of people on each team who had previous expe- rienceworkingtogethersuccessfully,thedirectoraskedthememberstoprovidenamesof their past partners. This information isd isplayed below both in a table and in a diagram.


Definition: A graph G consists of two finite sets: a nonemptyset V(G) of vertices and a set E(G) of edges, where eache dge is associated with a set consisting of either one or two verticescalled its endpoints. The correspondence from edges to endpoints is called the edge-endpoint function. An edge with just one endpoint iscalled a loop, and two or more distincte dges with the same set of endpoints are said to be parallel. An edge issaid to connect its endpoints; two vertices that are connected by an edge are called adjacent; and a vertex that is an endpoint of a loop issaid to be adjacent to itself. An edge issaid to be incident on each of it s endpoints, an d two edges incident on the same en dpoint are called adjacent. A vertex on which no e dges are incident iscalled isolated.


Example 10.1.1 Terminology Consider the following graph:




  1. Write the vertexset and the edge set, and give a table showing the edge-endpoint function. b. Find all edges that are incident on v1, all vertices that are adjacent to v1, all e dges that are adjacent to e1, all loops, all parallel edges, all vertices that are adjacent to themselves, an

One important class of graphsconsists of those that do not have any loops or parallel edges.Such graphs are called simple. In asimple graph, no two edgesshare the same set of endpoints, so specifying two endpoints is su fficient to determine an edge.



Download 0,76 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish