Таблица 1. Внутри- и внеклеточные концентрации ионов (ммоль∙ л-1) в мышечных клетках гомойотермных животных (А- — высокомолекулярные внутриклеточные анионы)
Внутриклеточная
концентрация
|
Внеклеточная
концентрация
|
Na+
|
12
|
Na+
|
145
|
К+
|
155
|
К+
|
4
|
Са2+
|
10-8 -10-7
|
Са2+
|
2
|
Cl-
|
4
|
Сl-
|
120-130
|
НСОз
|
8
|
НСОз
|
27
|
А-
|
155
|
Прочие катионы
|
5
|
Роль проницаемости клеточной мембраны в формировании ПП. Проницаемость клеточной мембраны — это ее способность пропускать воду, незаряженные и заряженные частицы (ионы) согласно законам диффузии и фильтрации. Проницаемость клеточной мембраны определяется следующими факторами: 1) наличием в составе мембраны различных ионных каналов — управляемых (с воротным механизмом) и неуправляемых (каналов утечки); 2) размерами каналов и размерами частиц; 3) растворимостью частиц в мембране (клеточная мембрана проницаема для растворимых в ней липидов и непроницаема для пептидов).
Термин «проводимость» следует использовать только лишь применительно к заряженным частицам. Следовательно, проводимость — это способность заряженных частиц (ионов) проходить через клеточную мембрану согласно электрохимическому градиенту.
Ионы, подобно незаряженным частицам, переходят через мембрану из области с высокой концентрацией в область с низкой концентрацией. При большом градиенте концентрации и хорошей проницаемости мембраны, разделяющей соответствующие растворы, проводимость ионов может быть высокой, при этом наблюдается односторонний ток ионов. Если разность концентраций ионов по обе стороны мембраны снизится, то проводимость ионов также уменьшится, хотя проницаемость сохранится прежней — высокой. Кроме того, проводимость иона при неизменной проницаемости мембраны зависит и от заряда иона: одноименные заряды отталкиваются, разноименные — притягиваются. Возможна ситуация, когда при хорошей проницаемости мембраны проводимость ионов через мембрану оказывается низкой или нулевой в случае отсутствия движущей силы — концентрационного и(или) электрического градиентов (их совокупность называют электрохимическим градиентом).
Таким образом, проводимость иона зависит от его электрохимического градиента и от проницаемости мембраны: чем они больше, тем лучше проводимость иона через мембрану. Перемещения ионов в клетку и из клетки, согласно концентрационному и электрическому градиентам в состоянии покоя клетки, осуществляются преимущественно через неуправляемые (без воротного механизма) каналы, их называют также каналами утечки. Неуправляемые каналы всегда открыты, они практически не меняют своей пропускной способности при электрическом воздействии на клеточную мембрану и ее возбуждении. Неуправляемые каналы подразделяются на ионоселективные каналы (например, калиевые медленные неуправляемые каналы) и иононеселективные каналы. Последние пропускают различные ионы — К+, Na+, Сl-.
Роль проницаемости клеточной мембраны и различных ионов в формировании ПП. Na+ и К+ в покоящейся клетке перемещаются через мембрану согласно законам диффузии, при этом К+ из клетки выходит в значительно большем количестве, чем входит Na+ в клетку, поскольку проницаемость клеточной мембраны для К+ примерно в 25 раз больше проницаемости для Na+.
Органические анионы из-за своих больших размеров не могут выходить из клетки, поэтому внутри клетки в состоянии покоя отрицательных ионов оказывается больше, чем положительных. По этой причине клетка изнутри имеет отрицательный заряд. Интересно, что во всех точках клетки отрицательный заряд практически одинаков. Об этом свидетельствует одинаковая величина ПП при введении микроэлектрода на разную глубину внутрь клетки, как это имело место в опытах Ходжкина, Хаксли и Катца. Гигантский аксон кальмара (его диаметр около 1 мм) в этом опыте находился в морской воде, один электрод вводился в аксон, другой помещали в морскую воду. Заряд внутри клетки является отрицательным как абсолютно (в гиалоплазме клетки содержится больше анионов, нежели катионов), так и относительно наружной поверхности клеточной мембраны. Однако превышение абсолютного числа анионов над числом катионов в клетке чрезвычайно мало. Но этого различия достаточно для создания разности электрических потенциалов внутри и вне клетки.
Главным ионом, обеспечивающим формирование ПП, является ион К+. Об этом свидетельствуют результаты опыта с перфузией внутреннего содержимого гигантского аксона кальмара солевыми растворами. При уменьшении концентрации К+ в перфузате ПП уменьшается, при увеличении концентрации К+ ПП увеличивается. В покоящейся клетке устанавливается динамическое равновесие между числом выходящих из клетки и входящих в клетку ионов К+. Электрический и концентрационный градиенты противодействуют друг другу: согласно концентрационному градиенту К+ стремится выйти из клетки, отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому. Когда концентрационный и электрический градиенты уравновесятся, число выходящих из клетки ионов К+ сравнивается с числом входящих ионов К+ в клетку. В этом случае на клеточной мембране устанавливается так называемый равновесный калиевый потенциал.
Равновесный потенциал для любого иона можно рассчитать по формуле Нернста. Концентрация положительно заряженного иона, находящегося снаружи, в формуле Нернста располагается в числителе, иона, находящегося внутри клетки, — в знаменателе. Для отрицательно заряженных ионов расположение противоположное.
где Eion — потенциал, создаваемый данным ионом; R — газовая постоянная (8,31 Дм); Т — абсолютная температура (273+37 °С); Z — валентность иона; F — постоянная Фарадея (9,65-1 04); [ion]i — концентрация иона внутри клетки inside; [ion]0 — концентрация иона во внешней среде клетки (outside).
При температуре 37 °С равновесный потенциал для К+ с учетом соотношения концентрации его снаружи и изнутри (1/39) и валентности 1 равен —97 мВ. Однако реальный ПП миоцита теплокровного животного несколько меньше — около —90 мВ. Это объясняется тем, что в создании потенциала ПП принимают участие и другие ионы, хотя их роль менее значительна в сравнении с ролью иона К+. Равновесный потенциал для Na+ равен +55 мВ. В целом ПП — это производное равновесных потенциалов всех ионов, находящихся внутри и вне клетки и поверхностных зарядов клеточной мембраны.
Do'stlaringiz bilan baham: |