Figure 2: Some Applications of Artificial Intelligence



Download 3,41 Mb.
Pdf ko'rish
bet6/12
Sana16.11.2022
Hajmi3,41 Mb.
#867028
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
deeplearningpresentation-180625071236 (1)

Enrollment Phase 
Deep learning can 
determine which parts of a 
face are important to 
measure. Deep Convolution 
Neural Network (DCNN) 
can be trained to learn 
important features. 
(Simonyan et al., 2014) 
What is the best feature measure that represents human face in a best way?
61


Step-3. Store DCNN model and Feature in Database-
Enrollment 
Phase
62


Step 1: Face Detection-
Recognition Phase
Face Detection: Face needs to be 
located and region of interest is 
computed.

Histogram of Oriented 
Gradients (HOG) is faster and 
easier algorithm for face 
detection. 

Detected faces are given to next 
step of preprocessing.
63


Step-2. Pre-processing-
Recognition Phase 

Pre-process to overcome issues like noise, 
illumination using any suitable filters 
[Kalman Filter, Adaptive Retinex (AR), 
Multi-Scale Self Quotient (SQI), Gabor 
Filter, etc.]

Pose/rotation can be accounted by using 
3D transformation or affine transformation 
or face landmark estimation

Determine 68 landmark points on every 
face— the top of the chin, the outside edge 
of each eye, the inner edge of each 
eyebrow, etc.
64
Figure 22: Landmark point estimation (Source: aiehive.com)


Step 3: Feature Extraction-
Recognition Phase 

In this third step of Deep Face Recognition, we have to use trained DCNN 
model, which was generated during feature extraction step of enrollment 
phase

A query image is given as input.

The DCNN generates 128 feature values.

This feature vector is then compared with feature vector stored in database

Download 3,41 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish