Fanidan tayyorlagan kurs ishi mavzu: Oddiy differensial tenglamalarni taqribiy yechishning Adams va Miln usullari Tayyorladi


Kurs ishi uslubiyati va uslublari



Download 1,26 Mb.
bet3/12
Sana25.06.2022
Hajmi1,26 Mb.
#702783
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
2 5219697252594884254

Kurs ishi uslubiyati va uslublari. Kurs ishi mavzusi boyicha O’zbekiston Respublikasi prezidenti Sh.M.Mirziyoyev tomonidan ishlab chiqilgan O’zbekistonning 2017-2021yillarda O‘zbekiston Respublikasini rivojlantirishning beshta ustuvor yo‘nalishlari bo‘yicha HARAKATLAR STRATEGIYASI , xususan raqamli tizimlar va ularni formallashtirishning ustuvor yo‘nalishari, O’zbekiston Respublikasi Oliy Majlisi tomonidan qabul qilingan qarorlar, ushbu mavzu bo’yicha yetakchi olimlarning ilmiy tadqiqot natijalari, xorijda va mamlakatimizda to’plangan ilmiy, amaliy tajriba va xulosalardan unumli foydalanilgan. Ilmiy ishda mantiqiy sxemalash, statistik guruxlash, dinamik qatorlash, jadvallarni analitik taqqoslash kabi uslublardan foydalanildi.
Kurs ishi tuzilishi va tarkibi. Kurs ishi “Oddiy differensial tenglamalarni taqribiy yechishning Adams va Miln usullari” mavzusida yozilgan bo’lib kirish, 2 bob xulosa va foydalanilgan adabiyotlar ro’yxatidan iborat. Kurs ishi ikki qismdan iborat bo‘lib, birinchi bobida sonli differensiallash, umumiy mulohazalar, Koshi masalasi, ketma-ket yaqinlashish usuli (Pikar algoritmi), har bir usul bo‘yicha qisqacha nazariy ma’lumotlar berilgan.
Ikkinchi bobida ushbu oddiy differensial tenglamalarni taqribiy yechish usullari jumladan, Eyler usuli, Adams ekstrapolyatsion va Adams interpolyatsion metodi, va Miln usuli. Har bir usul bo‘yicha qisqacha nazariy ma’lumotlar berilgan.


I BOB. Oddiy differensial tenglamalarni taqribiy yechish usullari


Yangi texnika va texnologiyaning keskin o‘sib borishi, matematika fanining zamonaviy bo‘limlarini xalq xo‘jaligi masalalarini yechishga yanada ko‘proq qo‘llanila boshlagani amaliy masalalarni yechishga ixtisoslashtirilgan bakalavrlar va magistrlarni tayyorlashga bo‘lgan talabni borgan sari orttirib bormoqda.Hozirgi kunda tayyorlanayotgan bakalavrlarning matematik ma’lumoti oliy matematika fanida o‘qitilayotgan an’anaviy bo‘limlar bilan chegaralanib qolmasligi zarur. Ayniqsa "Amaliy matematika" yo‘nalishi bo‘yicha ta’lim olayotgan talabalardan zamonaviy matematikaning zarur bo‘limlarini bilishni, birinchi galda esa hisoblash matematikasining usullarini mustahkam egallashni va ulardan amaliy masalalarni yechishda foydalanishni hamda yechilayotgan masalani dasturini yaratib, zarur sonli yechimni olishga erisha olishlari talab etiladi.Shuni yana ta’kidlab o‘tish lozimki, zamonaviy hisoblash texnikasini unumli ishlatish,taqribiy va sonli analiz usullaridan oqilona foydalanish mumkin emas. Shuning uchun, rivojlangan chet el mamlakatlarida va davlatimizda hisoblash matematikasiga bo‘lgan qiziqish keskin ortib bormoqda. EHM larning oxirgi paytlarda rivojlanib borishi sonli-taqribiy usullarning amalga tadbiqiga keng istiqbol yaratdi.Ma’lumki, hayotda uchraydigan barcha jarayonlarning matematik modellarini tuzish mumkin. Bu modellar o‘rganilayotgan jarayonning asosiy xususiyatlarini o‘zida iloji boricha to‘laroq, to‘kisroq mujassam qilishi kerak. Bu esa matematik modellarning ilojsiz murakkablashuviga sabab bo‘ladi. Bunday matematik modellarni ishlatish, ular asosida qaralayotgan jarayon ko‘rsatkichlarining xususiyatlarini tasvirlovchi yechim olish ham o‘z navbatida murakkablashadi.
Demak, izlanuvchi oldida bir-biriga zid ikki masala ko‘ndalang bo‘ladi:
matematik modellar yetarli darajada mukammal va murakkab bo‘lishi kerak, lekin bunday modellarni ishlatish qator qiyinchiliklarni ham keltirib chiqaradi.
Matematik modellarni tashkil qiluvchi algebraik, chiziqsiz differensial, integral, integro-differensial va boshqa tenglamalarni yechish usullari yetarli darajada takomillashmagan. Matematika kurslarida keltirilayotgan aniq, analitik usullar faqat xususiy ko‘rinishdagi, sodda tenglamalarning yechimini topish imkonini beradi, holos. Sonli-taqribiy usullar esa umumiyroq, ancha murakkab tenglamalarning yechimlarini topishga imkon beradi. Natijada analitik usuldayechilmagan tenglamalarni EHM larda sonli-taqribiy usullar bilan yechish imkoniyati yaratildi.
"Amaliy matematika" yo‘nalishi bo‘yicha ta’lim olayotgan bakalavrlar amaliy masalalarni EHMda yechishlari uchun ikkita asosiy yo‘nalish bo‘yicha yetarlicha chuqur bilimga ega bo‘lishlari kerak. Birinchidan, ular EHM uchun biror zamonaviy algoritmik tilda ma’lum algoritm asosida dastur tuzishni bilishlari, ikkinchidan, amaliy masalalarni yechishning sonli -taqribiy usullari haqida ham yetarlicha bilimga ega bo‘lishlari kerak.

Download 1,26 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish