Электропроводность полупроводников


Собственные полупроводники



Download 384,32 Kb.
bet2/6
Sana23.07.2022
Hajmi384,32 Kb.
#842655
TuriРеферат
1   2   3   4   5   6
Bog'liq
полупроводники

1.Собственные полупроводники

Как уже отмечалось, в полупроводниках появление носителей заряда определяется рядом факторов, важнейшими из которых являются чистота материала и его температура. В зависимости от степени чистоты полупроводники делятся на собственные и примесные. Собственный полупроводник – это полупроводник, в котором отсутствуют примесные атомы другой валентности, влияющие на его электропроводность. Естественно, в реальных материалах в кристаллической решетке всегда существуют примеси, но у собственных полупроводников их концентрация пренебрежимо мала.


Рассмотрим строение полупроводникового материала, получившего наибольшее распространение в современной электронике, – кремния (Si). В кристалле этого полупроводника атомы располагаются в узлах кристаллической решетки, а электроны наружной электронной оболочки образуют устойчивые ковалентные связи, когда каждая пара валентных электронов принадлежит одновременно двум соседним атомам и крепко связана с ними. Кремний относится к IV группе таблицы Менделеева, следовательно, на наружной электронной оболочке располагаются по четыре валентных электрона; это означает, что вокруг каждого из атомов, кроме четырех собственных электронов, вращаются еще четыре соседних электрона. Таким образом, вокруг каждого атома образуются прочные электронные оболочки, состоящие из восьми обобществленных валентных электронов (рисунок 3.1). Такая связь характеризуется очень высокой прочностью.


При температуре абсолютного нуля (Т = 0 К) все энергетические состояния внутренних зон и валентная зона занята электронами полностью, а зона проводимости совершенно пуста, поэтому кристалл полупроводника фактически является диэлектриком.



Рисунок 3.1 – Структура связей атома кремния в кристаллической решетке при Т = 0 К
При передаче кристаллической решетке дополнительной энергии, например при повышении температуры в результате поглощения каким-либо электроном этой дополнительной энергии, он разрывает ковалентную связь. Появляется вероятность его перехода в зону проводимости, где он становится свободным носителем n электрического заряда (рисунок 3.2), причем, чем больше температура, тем выше эта вероятность. Одновременно с этим у того атома полупроводника, от которого отделился электрон, возникает незаполненный энергетический уровень в валентной зоне, называемый дыркой р. Она представляет собой единичный положительный электрический заряд (равный по модулю заряду электрона) и может перемещаться по всему объему полупроводника под действием электрических полей, диффузии (в результате разности концентраций носителей заряда в различных зонах полупроводника), а также в результате теплового движения. На самом деле движутся только электроны, но их эстафетное перескакивание с атома на атом можно формально описать как движение одной дырки, перемещающийся в направлении, обратном движению электронов, т.е. в направлении поля.

Рисунок 3.2 – Генерация пары свободных носителей заряда
«электрон – дырка» при Т > 0 К

Таким образом, в идеальном кристалле полупроводника при нагревании образуются пары носителей заряда «электрон – дырка», которые обуславливают появление собственной электрической проводимости полупроводника.


Процесс образования пары «электрон – дырка» называется генерацией свободных носителей заряда. Скорость генерации G определяется количеством пар носителей заряда, генерируемых в единицу времени. Она обратно пропорционально ширине запрещенной зоны ΔW и прямо пропорциональна температуре Т.


Эта пара существует в течение некоторого времени, называемого временем жизни носителей электрического заряда (оно обозначается τn для электронов и τp для дырок). В течение этого промежутка времени носители участвуют в тепловом движении, взаимодействуют с электромагнитными полями как единичные электрические заряды, перемещаются под действием градиента концентрации. Затем в результате хаотического движения электрона происходит восстановление ковалентной связи электрона с атомом – так называемая рекомбинация, в результате которой пара носителей заряда исчезает. Скорость рекомбинации R определяется количеством пар носителей заряда, исчезающих в единицу времени.


Для собственного полупроводника τn = τp = τi. В состоянии термодинамического равновесия (т.е. при постоянной температуре) скорости генерации и рекомбинации одинаковы, поэтому в полупроводнике устанавливаются равновесные собственная концентрация электронов ni и собственная концентрация дырок pi; т.к. они генерируются попарно, для собственного полупроводника выполняется условие ni = pi. При комнатной температуре собственная концентрация составляет, например, для кремния 1,4*1010 см-3, а для германия 2,5*1013 см-3. Она рассчитывается по формуле:



,

(3.1)

где ΔW – ширина запрещенной зоны, Дж;
k – постоянная Больцмана, Дж/К;
T – абсолютная температура, К;
Nc, Nv – эффективные плотности состояний в зоне проводимости и в валентной зоне соответственно, м-3.

Download 384,32 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish