Электроэнергетические системы План: Общие сведения об энергетических системах


Режимы и параметры системы и сети



Download 0,65 Mb.
bet10/25
Sana11.03.2022
Hajmi0,65 Mb.
#490227
1   ...   6   7   8   9   10   11   12   13   ...   25
Bog'liq
Электроэнергетические системы

Режимы и параметры системы и сети
Состояние системы в любой момент времени или на некотором интервале времени называется режимом системы.
Режим определяется показателями, которые называются параметрами режима к их числу относятся:
1)частота,
2)активная и реактивная мощность в элементах системы,
3)напряжение в различных точках сети у потребителей,
4)величины токов,
5)величины углов расхождения векторов ЭДС и напряжения.
Различают три основных вида режимов электроэнергетических систем:
1. Нормальный установившейся режим, применительно к которому проектируется элкктрическая сеть и определяются ее технико–экономические характеристики;
2. Послеаварийный установившийся режим, наступающий после аварийного отключения какого – либо элемента сети или ряда элементов (в этом режиме система и соответственно сеть могут работать с несколько ухудшенными технико– экономическими характеристиками);
3. Переходный режим, во время которого система переходит из одного состояния к другому.
Любой режим состоит из множества различных процессов.
Различают параметры режима и параметры сети.
Параметры режима электрической сети связаны между собой определенными зависимостями, в которые входят некоторые коэффициенты, зависящие от физических свойств элементов сети, от способа соединения этих элементов между собой, а также от некоторых допущений расчетного характера.
К ним относятся полное сопротивление, активное и реактивное сопротивление, проводимости элементов, собственная и взаимная проводимости, коэффициент трансформации, коэффициент усиления.
Например, ток на участке ЛЭП определяется зависимостью: I= ; Здесь U1,U2,I – параметры режима; ZЛ – сопротивление данного участка системы (линии), является одним из параметров сети.
Ряд параметров сети зависит от характера изменений ее режима, т.е. является нелинейной системой. Однако во многих практических задачах параметры сети можно полагать не изменяющимися и считать сеть линейной.
Другой вид нелинейности сети обусловлен характером соотношений между параметрами ее режима. Так, мощность, связана квадратичной зависимостью с напряжением и т.д.( S= UI= U = )
Нелинейность такого вида надо учитывать.
Электрическую сеть рассматривают применительно к неизменному режиму системы, но в действительности такого режима не существует, и говоря об установившемся режиме имеют в виду режим малых возмущений. Отклонения параметров режима, происходит около некоторого устойчивого состояния.
Система должна быть устойчива при этих малых возмущениях. Иначе говоря, она должна обладать статической устойчивостью.
Аварийные переходные процессы возникают при резких аварийных изменениях режима, например, при к.з. элементов системы и последующем их отключении, при изменении схемы электрических соединений элементов системы.
Большие возмущения в системе при аварийных переходных процессах приводят к значительным отклонениям параметров режима к большим возмущениям, устойчивость по отношению к которым определяют как динамическую.
При этом под динамической устойчивостью понимают способность системы восстанавливать после больших возмущений свое состояние, практически близкое к исходному.
Необходимо учитывать изменения параметров режима, которые возникают при 1)увеличении передаваемых мощностей, 2)росте нагрузок и 3)изменении схемы электрических соединений в результате повреждений в сети.
Расчет режимов линий электропередач и электрических сетей
Связь между изменяющимися величинами определяется с помощью диаграмм, в которых каждая из величин характеризуется вектором. Построим диаграмму, показывающую соотношения между токами и напряжениями П-образной схемы замещения.
Расчет режима ЛЭП при заданном токе нагрузки и напряжении в конце линии
Будем считать, что режим конца линии задан фазным напряжением Uф=сonst и отстающим током нагрузки I2. Также заданы Z12=r12+jx12, в12.
Необходимо определить 1) напряжение в начале линии – U1,2) ток в продольной части – I12, 3) потери мощности - S12 4) ток в начале линии – I1.

Расчет состоит в определении неизвестных токов и напряжений, последовательно от конца линии к началу.


Емкостный ток в конце линии 1-2, по закону Ома:




Ток в продольной части линии 1-2, по первому закону Кирхгофа: I12=I2+Iкс12: (2)
Напряжение в начале линии по закону Ома: U1ф=U2ф+I12Z12: (3)
Емкостный ток в начале линии:
Ток в начале линии по первому закону Кирхгофа:
Потери мощности в линии (в трех фазах): S12=3I212Z12: (6)
Векторная диаграмма токов и напряжений строится в соответствии с выражениями 1-5.

Вначале строим известные U2ф и I2.
Полагаем что U2ф=U2ф, т.е. напряжение U2ф направлено по действительной оси. Емкостный ток опережает на 90о напряжение U2ф. Ток I12 соединяет начало первого и конец второго суммируеммых векторов в правой части урав.(2) [I12=I2+ ]
Затем строим отдельно два слагаемых в правой части (3) [U1ф=U2ф+I12Z12]. I12Z12=I12r12+I12jx12 (7)
Вектор I12r12  I12, вектор I12jx12 опережает на 90о ток I12
Напряжение U1ф соединяет начало и конец суммируемых векторов U2ф, I12r12, I12jx12.
Ток опережает U1ф на 90о.
I1 соответствует (5) I1=I12+
В линии с нагрузкой напряжение в конце линии по модулю меньше, чем в начале U2ф<U1ф.
На линии на холостом ходу (I2=0), течет только емкостной ток, т.к. в соответствии с формулой I12=I2+Iкс12 (2) I12=Iкс12
В
этом случае напряжение в конце линии повышается U2ф>U
Векторная диаграмма для такой линии:

Падение и потеря напряжения в линии


Различие в напряжениях U2ф и U1ф в П-образной схеме определяется падением напряжения на сопротивлении Z12 (Z12+jx12), вызванным током I12. Определяется это падением напряжения как сумма вектора I12r12, совпадающего по фазе с вектором I12 и вектора I12jx12, опережающего вектор I12 на 90о.
Падение напряжения – геометрическая (векторная) разность между комплексами напряжений начала и конца линий.
Н
а рис. падение напряжения это вектор , т.е.
разность комплексных значений по концам линий, используется для характеристики режима линии.
Продольной составляющей падения напряжения Uк12 называют проекцию падения напряжения на действительную ось или на напряжение U2, Uк12=АС. Индекс “к” означает , что Uк12 – проекция на напряжение конца линии U2.
Обычно Uк12 выражается через данные в конце линии: U2, Pк12, Qк12.
Поперечная составляющая падения напряжения Uк12 – это проекция падения напряжения на мнимую ось, jUк12=СВ. Т. о. U1-U2= I12Z12=Uк12+jUк12.
Величина Uк12 определяет сдвиг вектора напряжения в начале линии (U1) на угол  по отношению к вектору напряжения в ее конце (U2).
Часто используют понятие потеря напряжения – это алгебраическая разность между модулями напряжений начала (U1) и конца (U2) линий.
На рис. U1– U2=АД.
Если поперечная составляющая Uк12 мала (например, в сетях Uном  110кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения напряжения.
Потеря напряжения является показателем изменения относительных условий работы потребителей в начале и в конце линии.
Расчет режимов линий электропередач и электрических сетей

при заданной мощности нагрузки


При подаче энергии по линии от начала к ее концу имеют место потери реактивной мощности. Они обусловлены реактивным сопротивлением линии и соответствующим ему реактивным сопротивлением схемы замещения этой линии. При передаче энергии имеют место и потери активной мощности, расходуемой на нагревание проводов. Поэтому в схеме замещения следует различать полную мощность до сопротивления Z12(r12+jx12), Sн12 и после него Sк12.
Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в конце линии
Задано напряжение в конце линии U2=сonst. Известна мощность нагрузки S2, напряжение U2, сопротивление и проводимость линии Z12=r12+jx12, в12.

Необходимо определить напряжение U1, мощности в конце и в начале продольной части линии Sк12, Sн12, потери мощности S12, мощность в начале линии S1. Для проверки ограничений по нагреву иногда определяют ток в линии I12.


Расчет аналогичен расчету при заданном токе нагрузке (I2), и состоит в последовательном определении от конца линии к началу неизвестных мощностей и напряжений при использовании I закона Кирхгофа и закона Ома. Будем использовать мощности трех фаз и линейные напряжения.
Зарядная (емкостная) мощность трех фаз в конце линии:
–jQкс12=3I*кс12U2ф=
Мощность в конце продольной части линии по I закону Кирхгофа: Sк12=S2 – jQкс12
Потери мощности в линии: S12=3I212Z12=
Ток в начале и в конце продольной ветви линии одинаков.
Мощность в начале продольной ветви линии больше, чем мощность в конце, на величину потерь мощности в линии, т.е. Sн12=Sк12+S12
Линейное напряжение в начале линии по закону Ома равно:

Download 0,65 Mb.

Do'stlaringiz bilan baham:
1   ...   6   7   8   9   10   11   12   13   ...   25




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish