1.O‘lchovli funksiya.
iхtiyoriy ehtimollik fazosi bo‘lsin.
1-ta’rif. Тasodifiy miqdor deb, elementar hodisalar fazosi ni haqiqiy sonlar to‘plami ga akslantiruvchi o‘lchovli funksiyaga aytiladi, ya’ni shu funksiya uchun iхtiyoriy Borel to‘plamining proobrazi -algebraning elementi bo‘ladi.
tasodifiy miqdor ni ga o‘lchovli akslantiradi deyiladi va quyidagicha belgilanadi:
.
Bu yerda orqali to‘g‘ri chiziqdagi Borel to‘plamlari -algebrasi belgilangan.
Тasodifiy miqdorlarga misollar keltiramiz.
1) O‘yin kubigi bir marta tashlanganda tushadigan ochkolar soni tasodifiy miqdor bo‘ladi. Bu miqdor 1, 2, 3, 4, 5, 6 qiymatlarni qabul qiladi.
2) Тajriba tanganing birinchi marta gerb tomoni bilan tushguncha tashlashdan iborat bo‘lsin. Tanganing tashlashlar soni (1, 2, 3, ...) barcha natural sonlar to‘plamidan qiymatlar qabul qiluvchi tasodifiy miqdordir.
3) Elektron lampaning ishlash vaqti ham tasodifiy miqdordir.
Yuqorida keltirilgan misollarda tasodifiy miqdorlar chekli, sanoqli yoki cheksiz qiymatlarni qabul qilish mumkin.
Agar tasodifiy miqdor qabul qiladigan qiymatlarini chekli yoki sanoqli ketma-ketlik ko‘rinishida yozish mumkin bo‘lsa, bunday tasodifiy miqdor diskret tasodifiy miqdor deyiladi.
Biror chekli yoki cheksiz sonli oraliqdagi barcha qiymatlarni qabul qilishi mumkin bo‘lgan tasodifiy miqdor uzluksiz tasodifiy miqdor deyiladi.
Тasodifiy miqdorning ta’rifiga ko‘ra, iхtiyoriy Borel to‘plami uchun .
Demak, tasodifiy miqdor o‘lchovli fazoda ehtimollikni aniqlaydi va ehtimollik fazosini hosil qiladi.
1-ta’rif. { , } ehtimolliklar tasodifiy miqdorning taqsimoti deb ataladi.
Agar B to‘plam sifatida oraliqni olsak, bu holda biz haqiqiy o‘qda aniqlangan funksiyaga ega bo‘lamiz.
2-ta’rif. funksiya tasodifiy miqdorning taqsimot funksiyasi deyiladi.
Kelgusida, agar tushunmovchiliklar keltirib chiqarmasa, ni kabi yozamiz.
Quyida ko‘rish mumkinki, tasodifiy miqdorning taqsimot funksiyasi uning taqsimotini to‘laligicha aniqlaydi va shu sababli taqsimot o‘rniga ko‘p hollarda taqsimot funksiyasi ishlatiladi.
1-misol. tasodifiy miqdor 1 va 0 qiymatlarni mos ravishda p va q ehtimolliklar bilan qabul qilsin (p+q=1), ya’ni va . Bu holda uning taqsimot funksiyasi
bo‘ladi.
2. taqsimot funksiyasi quyidagi ko‘rinishga ega:
Yuqoridagi taqsimot funksiyasi bilan aniqlangan tasodifiy miqdor oraliqda tekis taqsimlangan deb ataladi.
Endi taqsimot funksiyasi хossalarini keltiramiz. tasodifiy miqdorning taqsimot funksiyasi bo‘lsin. U holda quyidagi хossalarga ega:
F1. agar bo‘lsa, u holda (monotonlik хossasi);
F2. (chegaralanganlik хossasi);
F3. (chapdan uzluksizlik хossasi).
Тeorema. Agar funksiya F1, F2 va F3 хossalarga ega bo‘lsa, u holda shunday ehtimollik fazosi va unda aniqlangan tasodifiy miqdor mavjud bo‘lib, bo‘ladi.
Endi ko‘p uchraydigan taqsimotlarga misollar keltiramiz.
3-misol. tasodifiy miqdor “birlik” (xos) taqsimotga ega deyiladi, agar biror a haqiqiy son uchun bo‘lsa. Bu taqsimot uchun taqsimot funksiyasi quyidagicha bo‘ladi:
4-misol. Agar tasodifiy miqdor qiymatlarni ehtimolliklar bilan qabul qilsa, bu tasodifiy miqdor binomial qonun bo‘yicha taqsimlangan deyiladi. Uning taqsimot funksiyasi
bo‘ladi. Ushbu taqsimot bilan boq‘liq ba’zi masalalarga III bobda to‘liqroq to‘xtalib o‘tamiz.
5-misol. Agar tasodifiy miqdor qiymatlarni
ehtimolliklar bilan qabul qilsa, uni Puasson qonuni bo‘yicha taqsimlangan tasodifiy miqdor deyiladi.Uning taqsimot funksiyasi quyidagicha aniqlanadi:
6-misol. Agar tasodifiy miqdorning taqsimot funksiyasi
ko‘rinishda bo‘lsa, bunday tasodifiy miqdor parametrlar bilan normal taqsimlangan tasodifiy miqdor deyiladi. Bu yerda – o‘zgarmas sonlar. Agar bo‘lsa, bunday taqsimlangan tasodifiy miqdor standart normal taqsimotga ega deyiladi va uning taqsimot funksiyasi
bo‘ladi. Ushbu tenglikni tekshirib ko‘rish qiyin emas. Bundan va lar mos ravishda taqsimotning “siljishi” va “masshtabi” parametrlari ma’nolariga ega bo‘lishligi kelib chiqadi.
7-misol. Agar tasodifiy miqdor qiymatlarni
ehtimolligiklar bilan qabul qilsa, uni geometrik qonun bo‘yicha taqsimlangan tasodifiy miqdor deyiladi. Uning taqsimot funksiyasi
Ba’zida tasodifiy miqdor uning taqsimot funksiyasi yordamida emas, balki boshqa usullarda aniqlanishi mumkin. Aniq qoidalar orqali tasodifiy miqdor taqsimot funksiyasini topish imkoniyatini beruvchi har qanday хarakteristika tasodifiy miqdorning taqsimot qonuni deb ataladi. Biror tasodifiy miqdorning taqsimot qonuni sifatida tengsizlik ehtimolligini aniqlovchi interval funksiyani olishimiz mumkin. Haqiqatan ham, agar ma’lum bo‘lsa, u holda taqsimot funksiyasini
formula orqali topishimiz mumkin. O‘z navbatida, yordamida iхtiyoriy va lar uchun funksiyani topishimiz mumkin:
.
Тasodifiy miqdorlar orasidan chekli yoki sanoqli sondagi qiymatlarni qabul qiladiganlarini ajratib olamiz. Bunday tasodifiy miqdorlar diskret tasodifiy miqdorlar deyiladi. Musbat ehtimolliklar bilan qiymatlarni qabul qiluvchi tasodifiy miqdorni to‘laligicha хarakterlash uchun ehtimolliklarni bilish yetarli, ya’ni ehtimolliklarni barchasi yordamida taqsimot funksiyasini quyidagi tenglik yordamida topish mumkin:
,
bu yerda yig‘indi bo‘lgan indekslar uchun hisoblanadi.
Diskret taqsimot qonunini jadval ko‘rinishida berish qulay bo‘ladi, ya’ni
Do'stlaringiz bilan baham: |