Editorial board editor-in-chief



Download 3,74 Mb.
Pdf ko'rish
bet57/74
Sana20.01.2023
Hajmi3,74 Mb.
#900629
1   ...   53   54   55   56   57   58   59   60   ...   74
Bog'liq
E learning in pharmaceutical continuing

The method TelSKART© 
was presented for the irst 
time during the conference 
Regional Research on Tourist Ser-
vices Consumers
, organized by the Polish Tourist Organization 
and the Ministry of Sport and Tourism (November 24-25 in War-
saw. Work published at: http://www.pot.gov.pl/dokumenty/do-
-pobrania/materia142y-szkoleniowe/Program%20konferencji%20
24_25_11_2009.pdf/


Bioinf
or
ma
tics
BIO-ALGORITHMS AND MED-SYSTEMS
JOURNAL EDITED BY JAGIELLONIAN UNIVERSITY – MEDICAL COLLEGE
Vol. 7, No. 13, 2011, pp. 67-70
A COmbINED SVm-RDA ClASSIFIER
FOR PROTEIN FOlD RECOGNITION
w
iesław
c
hMielnicki
1
, k
atarzyna
s
tąPor
2
1
 Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, Kraków, Poland 
2
 
Silesian University of Technology, Institute of Computer Science, Gliwice, Poland
Abstract:
Predicting the three-dimensional (3D) structure of a protein is a key problem in molecular biology. It is also an in
-
teresting issue for statistical methods recognition. There are many approaches to this problem considering discriminative and 
generative classiiers. In this paper a classiier combining the well-known support vector machine (SvM) classiier with regular
-
ized discriminant analysis (RDA) classiier is presented. It is used on a real world data set. The obtained results are promising 
improving previously published methods.
Keywords:
protein fold recognition, support vector machine, multi-class classiier, one-versus-one strategy
Introduction
Predicting the three-dimensional (3D) structure of a protein is 
a key problem in molecular biology. Proteins manifest their func
-
tion through these structures, so it is very important to know 
not only sequence of amino acids in a protein molecule, but 
also how this sequence is folded. The successful completion of 
many genome-sequencing projects has meant that the number 
of proteins with known amino acids sequence is quickly increas-
ing, but the number of proteins with known 3D structure is still 
relatively very small.
There is a variety of different aproaches to the protein struc-
ture prediction. They range from those based on physical prin
-
ciples, through methods that rely on evolutionary information, to 
the statistical methods based on machine-learning systems. An 
interesting survey of these methods can be found in Rychlewski 
et al. [22]. In this paper we focused on machine-learning algo
-
rithms (Stąpor [20]).
There are several machine-learning methods to predict the 
protein folds from amino acids sequences proposed in literature. 
Ding and Dubchak [5] experiment with support vector machine 
(SvM) and neural network (NN) classiiers. Shen and Chou 
[9] proposed ensemble model based on nearest neighbour. 
A modiied nearest neighbour algorithm called K-local hyperplane 
(HKNN) was used by Okun [14]. Nanni [13] proposed ensemble 
of classiiers: Fisher’s linear classiier and HKNN classiier.
There are two standard approaches to the classiication task: 
generative classiiers use training data to estimate the probability 
model for each class and then test items are classiied by com
-
paring their probabilities under these models. The discriminative 
classiiers try to ind the optimal frontiers between classes based 
on all the samples of the training data set.
This paper presents a classiier, which combines the sup
-
port vector machine (SvM) – discriminative classiier – with the 
statistical regularized discriminant analysis (RDA) – generative 
classiier. The SvM technique has been used in different ap
-
plication domains and has outperformed the traditional tech-
niques. However, the SvM is a binary classiier but the protein 
fold recognition is a multi-class problem and how to effectively 
extend a binary to the multi-class classiier case is still an on-
going research problem. There are many methods proposed to 
deal with this issue
One of the irst and well-known methods is one-versus-one 
strategy with max-win voting scheme. In this strategy all binary 
classiiers vote for the preferred class. Originally a class with the 
maximum number of votes is recognized as the correct class. 
However, some of these binary classiiers are unreliable. 
The votes from these classiiers inluence the inal classiica
-
tion result. In this paper there is a strategy presented to assign 
a weight (which can be treated as a measure of reliability) to 
each vote based on the values of the discriminant function from 
an RDA classiier.
The rest of this paper is organized as follows: Section 2 
introduces the database and the feature vectors used is these 
experiments, Section 3 presents the basis of RDA classiier, 
Section 4 shortly describes basics of the SvM classiier, Section 
5 describes the method of combining the classiiers and Section 
6 presents experimental results and conclusions.


Bioinf
or
ma
tics
68
A combined SvM-RDA 
classiier for protein fold recognition…
The database and feature vectors
Using machine-learning methods entails the necessity to ind out 
databases with representation of known protein sequences and 
its folds. Then this information must be converted to the feature 
space representation. 

Download 3,74 Mb.

Do'stlaringiz bilan baham:
1   ...   53   54   55   56   57   58   59   60   ...   74




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish