Differensial tenglamalar



Download 1.86 Mb.
bet73/187
Sana13.09.2019
Hajmi1.86 Mb.
1   ...   69   70   71   72   73   74   75   76   ...   187

Yetarliligi . Bir jinsli chegaraviy masala faqat trivial yechimga ega bo’lsin .U holda D≠0 bo’ladi .Demak ,(7.50) ga ko’ra bir jinsli bo’lmagan chegaraviy masala yagona trivialmas yechimga ega , chunki (7.50) dan tengsizlikni qanoatlantiradigan C1, C2, . . . . , Cn o’zgarmaslar bir qiymatli topiladi . Teorema to’la isbot bo’ldi.

7.3 -natija . Agar bir jinsli bo’lmagan chegaraviy masala ikkita y=φ1(x) va y= φ 2(x) , φ 1(x)≠ φ 2(x) yechimga ega bolsa , u holda y= φ 1(x) - φ 2(x) funksiya mos bir jinsli chegaraviy masalaning trivialmas yechimi bo’ladi; aksincha ,agar bir jinsli chegaraviy masalaning trivialmas yechimlarga ega bo’lsa , u holda bir jinsli bo’lmagan chegaraviy masala yo bironta ham yechimga ega bo’lmaydi yoki cheksiz ko’p yechimlarga ega bo’ladi.

Isboti Avval natijaning birinchi qismini isbotlaymiz .

Ravshanki , L(p) φ 1(x)≡0 , L(p) φ 2(x)≡0 va demak , L(p) (φ 1(x)- φ 2(x))≡0 , yana shunga o’xshash g0i 1(x)- φ 2(x))≡0 kelib chiqadi .Shuning uchun y= φ 1(x)- φ 2(x) funksiya bir jinsli chegaraviy masala L(p)y=0 , g0i(y)=0 uchun trivialmas yechim bo’ladi .

Endi agar bir jinsli chegaraviy masala trivialmas y=y(x)≠0 , x€[x0,x1] yechimga ega bo’lsa, D=0 bo’ladi ((7.33) ga qarang ) U holda (7.50) sistema yo yechimga ega bo’lmaydi yoki cheksiz ko’p yechimga ega bo’ladi . Natija isbot etildi .

Endi chiziqli bir jinsli bo’lmagan differentsial tenglamani olaylik , ya’ni L(p)y= f(x) ,shu bilan birga bir jinsli bo’lmagan chegaraviy shart ham berilgan bo’lsin . Boshqacha aytganda, ushbu



(7.51)

bir jinsli bo’lmagan chegaraviy masalani ko’raylik .Bu masalaning yechimi haqida fikr yuritish uchun avval g 0i (η(x))=Ai shartni qanoatlantiradigan ixtiyoriy η(x)€Cn[x0,x1] funksiyani olamiz .So’ngra z(x) =y(x) - η(x) almashtirishni bajaramiz . Bu φ(x) funksiya uchun g 0i (z(x))= g 0i (y(x)- η (x))= g 0i (y(x))- g 0i ( η (x))≡0,


Download 1.86 Mb.

Do'stlaringiz bilan baham:
1   ...   69   70   71   72   73   74   75   76   ...   187




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2020
ma'muriyatiga murojaat qiling

    Bosh sahifa
davlat universiteti
ta’lim vazirligi
O’zbekiston respublikasi
maxsus ta’lim
zbekiston respublikasi
o’rta maxsus
davlat pedagogika
axborot texnologiyalari
nomidagi toshkent
pedagogika instituti
texnologiyalari universiteti
navoiy nomidagi
samarqand davlat
guruh talabasi
ta’limi vazirligi
nomidagi samarqand
toshkent axborot
toshkent davlat
haqida tushuncha
Darsning maqsadi
xorazmiy nomidagi
Toshkent davlat
vazirligi toshkent
tashkil etish
Alisher navoiy
Ўзбекистон республикаси
rivojlantirish vazirligi
matematika fakulteti
pedagogika universiteti
таълим вазирлиги
sinflar uchun
Nizomiy nomidagi
tibbiyot akademiyasi
maxsus ta'lim
ta'lim vazirligi
махсус таълим
bilan ishlash
o’rta ta’lim
fanlar fakulteti
Referat mavzu
Navoiy davlat
umumiy o’rta
haqida umumiy
Buxoro davlat
fanining predmeti
fizika matematika
universiteti fizika
malakasini oshirish
kommunikatsiyalarini rivojlantirish
davlat sharqshunoslik
jizzax davlat