Darajali qatorlar yordamida integrallash
Faraz qilaylik «n» - tartibli differensial tenglama
(7.2.1)
uchun boshlang’ich shartlar berilgan
(7.2.2)
Tenglamaning o’ng tomoni boshlang’ich nuqta M0(x0, u0, u’0, ..., u0(n-1)) da analitik funktsiya bo’lsin.
(7.2.1) ning yechimini Teylor qatori (x0-nuqta atrofida) ko’rinishida qidiramiz:
(7.2.3)
Bu erda |x-x0| h, h – etarli kichik son.
Qatorning noma’lum koeffitsiyentlarini topish uchun, tenglamadan kerakli hosilalar olinib, (7.2.2) boshlang’ich shartlardan foydalanilanadi.
Agar x0=0 bo’lsa, yechim «x»ning darajalari bo’yicha qator ko’rinishida bo’ladi. Yuqorida keltirilgan usulni oddiy differensial tenglamalar tizimi uchun ham qo’llash mumkin.
Misol.
y”=x2u (7.2.4)
tenglamani boshlang’ich shart u(0)=1, u’(0)=0 ni qanoatlantiruvchi yechimi topilsin.
Do'stlaringiz bilan baham: |