Development of a fast relu activation function algorithm for deep learning problems


Properties of the Activation Function



Download 1,34 Mb.
bet4/6
Sana30.04.2023
Hajmi1,34 Mb.
#933593
1   2   3   4   5   6
Bog'liq
Article ReLU

Properties of the Activation Function


  • Non-Linearity: The main purpose of the activation function is to introduce Non-linearity in the network such that the network would be capable of learning more complex patterns.

  • Continuous differentiable:Activation function should be continuously differentiable with respect to the weights for the gradient-based optimization methods.

  • Monotonic: Activation function helps the neural network to converge easier into a more precise model.

What is ReLU?


ReLU function is one of the most widely used hidden layer activation function and it is non-linear, monotonic and also continuously differentiable almost everywhere (except at 0, the left derivative at z = 0 is 0 and the right derivative is 1).


  • ReLU is called piecewise linear function or hinge function because the rectified function is linear for half of the input domain and non-linear for the other half.

  • The ReLU layer does not change the size of its input.

  • ReLU does not activate all neurons, if the input is negative it converts to zero this makes the network sparse, efficient and easy for computation.

  • ReLU is non-smoothy, can only be used in the hidden layer.

Why ReLU is popular?


Observe the figure mentioned below to differentiate between activation functions.


  • Other activation functions like sigmoid, tanh suffer from vanishing gradient problem. Both ends of these curves are ‘almost- horizontal’. Gradient values at these parts of the curve are very small or have vanished. Because of that, the network refuses to learn further or the learning is drastically slow.

  • Rectifiers are faster, simply because they involve simpler mathematical operations. they do not require any normalization and exponential computation (such as those in sigmoid or tanh activation function).

  • The training of Neural Network on ReLU can be faster up to 6 times in comparison to other activation functions.

However, the rectifier has another problem dying ReLU problem. for argument lower than the value 0 the gradient vanishes. Neurons that went into that state stop responding to changes in input or error (i.e at gradient value 0, nothing changes).

Download 1,34 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish