Decomposition Methods in algorithms


Dual decomposition (pricing)



Download 54,26 Kb.
bet7/7
Sana26.01.2022
Hajmi54,26 Kb.
#410998
1   2   3   4   5   6   7
Bog'liq
decomposition

Dual decomposition (pricing)


We first form the partial Lagrangian, by introducing Lagrange multipliers only for the cou- pling constraint Fu + F˜v ¹ h:

L(u, v, λ) = cT u + c˜T v + λT (Fu + F˜v h)

= (FT λ + c)T u + (F˜T λ + c˜)T v λT h.


The dual function is

q(λ) = inf

u,v
{L(u, v, λ) | Au ¹ b,
A˜v ¹ ˜b}

= −λT h + inf (FT λ + c)T u + inf (F˜T λ + c˜)T v.

The dual optimization problem is



Au¹b

A˜v¹˜b


maximize q(λ) subject to λ º 0.



We’ll solve this dual problem using the projected subgradient method, which requires a subgradient of q at each iteration. Given λ, we can evaluate the dual function by solving two separate linear programs:

minimize (FT λ + c)T u

and

subject to Au ¹ b



minimize (F˜T λ + c˜)T v


˜ ˜
(9)

subject to Av ¹ b.


Let the optimal solutions to the linear programs be u¯ and v¯ respectively. A subgradient of



q is given by


g = −F u¯ − F˜v¯ + h

Dual decomposition, with subgradient method for the master problem gives the following algorithm:
repeat

Solve the subproblems. Solve the two LP subproblems (9) to obtain optimal u¯, v¯.

Master algorithm subgradient. g = −F u¯ − F˜v¯ + h.

Master algorithm update. λ := (λ αkg)+.


·
Here ( )+ denotes the nonnegative part of a vector, i.e., projection onto the nonnegative orthant.

The interpretation of this dual decomposition algorithm is as follows. At each step, the master algorithm sets the prices for the resources. The subsystems each optimize, indepen- dently, but taking into account the expense of using the resources, or income generated from not using the resource. The subgradient g = −Fu F˜v + h is nothing more than the margin of the original shared coupling constraint Fu + F˜v ¹ h. If gi < 0, then too much of resource i is being consumed by the susbsystems; if gi > 0, then it is possible for the two subsystems to use more of resource i. The master algorithm adjusts the prices in a very simple way: the price for each resource that is over used is increased; the pre for each resource that is not



over the limit is decreased, but never made negative.

We use the subgradient method with diminishing step size rule αk = 1/k to solve

master pricing problem, for the exampel considered above. Figure 3 shows the dual function value q(λ(k)) versus iteration number k, while figure 4 shows the dual residual.























References


[Ber99] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

[BV03] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2003.

[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations Research, 8:101–111, 1960.

−3.7
−3.75
−3.8
−3.85

q(λ(k))
−3.9
−3.95
−4
−4.05
−4.1

0 5 10 15 20 25 30

k

Figure 3: Dual function value q(λ(k)) versus iteration number k, when master problem is solved with subgradient method using diminishing rule αk = 1/k.

100


10−1



p? q(λ(k))
10−2


10−3


10−4

0 5 10 15 20 25 30

k

Figure 4: Dual residual versus iteration number k, whenmaster problem is solved



with subgradient method using diminishing rule αk = 1/ k.






Download 54,26 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish