Data science for service change Presented by Datasf


Find the needle in the haystack Summary: The five project types Find the needle in the haystack



Download 9,35 Mb.
bet7/11
Sana14.07.2022
Hajmi9,35 Mb.
#798000
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
DataScienceSF-Full-Web

Find the needle in the haystack


Summary: The five project types

Find the needle in the haystack


Prioritize your backlog
Flag “stuff” early
A/B test something
Optimize your resources
Some combination
Something else…

DataScienceSF

DataScienceSF

Cohort 1


ASR: Increase property tax revenues
Service Issue
Data Science
Service Change
Result
Expected: Increased revenue and time to revenue, reduced backlog, and more consistency in assessments
When a property sells in SF, we either accept the sales price or modify it to collect property taxes. So which sales should you accept and which should you dig into?
Our regression model identifies which sale prices are unusual for the location, time and property details
The model splits properties into two lists: normal sale prices to enroll directly in tax collection and outlier sales for manual review by appraisers
Prioritize your backlog
http://www.markersf.com/blog/
Full write up at datasf.org/showcase/datascience/
Service Issue
Data Science
Service Change
Result
Expected: Targeted eviction prevention that keeps residents in their homes
How can we make eviction prevention more proactive by identifying the most problematic eviction notices in real time?
An algorithm combines data sources to identify eviction notice filings that are outside the norm
A list of flagged eviction notices is sent to eviction prevention services to proactively review for service outreach
Evictions: Pro-actively prevent evictions
Find the needle in the haystack
Flag “stuff” early
Full write up at datasf.org/showcase/datascience/
Service Issue
Data Science
Service Change
Result
Expected: New customers and increased uptake of green subsidies
SF Environment offers financial incentives and technical assistance to help our constituents upgrade their lighting & refrigeration systems. But their list of leads is dwindling - how can they find new leads?
Mashed together multiple data sources to identify characteristics of stronger leads
New and longer list of property leads with enriched data for targeting marketing campaigns
ENV: Find new clients to help green our City
Find the needle in the haystack
Optimize your resources
Full write up at datasf.org/showcase/datascience/

Download 9,35 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish