Data Analytics (CS40003) Dr. Debasis Samanta Associate Professor



Download 1,76 Mb.
bet7/12
Sana23.07.2022
Hajmi1,76 Mb.
#844889
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
13ClusteringTechniques

Comments on k-Means algorithm

Note:

  • When SSE (L2 norm) is used as objective function and the objective is to minimize, then the cluster centroid (i.e. mean) is the mean value of the objects in the cluster.
  • When the objective function is defined as SAE (L1 norm), minimizing the objective function implies the cluster centroid as the median of the cluster.
  • The above two interpretations can be readily verified as given in the next slide.

Comments on k-Means algorithm

Case 1: SSE

We know,

To minimize SSE means,

Thus,

Or,

  •  

Comments on k-Means algorithm

Or,

Or,

Or,

  • Thus, the best centroid for minimizing SSE of a cluster is the mean of the objects in the cluster.
  •  

Comments on k-Means algorithm

Case 2: SAE

We know,

To minimize SAE means,

Thus,

Or,

  •  

Comments on k-Means algorithm

Or,

Solving the above equation, we get

  • Thus, the best centroid for minimizing SAE of a cluster is the median of the objects in the cluster.
  •  

Interpret the best centroid for maximizing TC (with Cosine similarity measure) of a cluster.
?
The above mentioned discussion is quite sufficient for the validation of k-Means algorithm.

Comments on k-Means algorithm

5. Complexity analysis of k-Means algorithm

Let us analyse the time and space complexities of k-Means algorithm.

Time complexity:

The time complexity of the k-Means algorithm can be expressed as

where = number of objects

= number of attributes in the object definition

= number of clusters

= number of iterations.

Thus, time requirement is a linear order of number of objects and the algorithm runs in a modest time if and (the iteration can be moderately controlled to check the value of ).

  •  

Download 1,76 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish