Data Analysis From Scratch With Python: Step By Step Guide



Download 2,79 Mb.
Pdf ko'rish
bet34/60
Sana30.05.2022
Hajmi2,79 Mb.
#620990
1   ...   30   31   32   33   34   35   36   37   ...   60
Bog'liq
Data Analysis From Scratch With Python Beginner Guide using Python, Pandas, NumPy, Scikit-Learn, IPython, TensorFlow and... (Peters Morgan) (z-lib.org)

11. Classification
Spam or not spam? This is one of the most popular uses and examples of
Classification. Just like Regression, Classification is also under Supervised
Learning. Our model learns from labelled data (“with supervision”). Then, our
system applies that learning to new dataset.
For example, we have a dataset with different email messages and each one was
labelled either Spam or Not Spam. Our model might then find patterns or
commonalities among email messages that are marked Spam. When performing
a prediction, our model might try to find those patterns and commonalities in
new email messages.
There are different approaches in doing successful Classification. Let’s discuss a
few of them:
Logistic Regression
In many Classification tasks, the goal is to determine whether it’s 0 or 1 using
two independent variables. For example, given that the Age and Estimated
Salary determine an outcome such as when the person purchased or not, how can
we successfully create a model that shows their relationships and use that for
prediction?
This sounds confusing which is why it’s always best to look at an example: 
Here our two variables are Age and Estimated Salary. Each data point is then
classified either as 0 (didn’t buy) or 1 (bought). There’s a line that separates the
two (with color legends for easy visualization). This approach (Logistic


Regression) is based on probability (e.g. the probability of a data point if it’s a 0
or 1).
As with Regression in the previous chapter wherein there’s this so-called black
box, the behind the scenes of Logistic Regression for Classification can seem
complex. Good news is its implementation is straightforward especially when
we use Python and scikit-learn: Here’s a peek of the dataset first
(‘Social_Network_Ads.csv’): 

Download 2,79 Mb.

Do'stlaringiz bilan baham:
1   ...   30   31   32   33   34   35   36   37   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish