Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


   determInatIon of equIvaLentS for cIrcuItS wIth



Download 5,69 Mb.
Pdf ko'rish
bet172/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   168   169   170   171   172   173   174   175   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

5.6 
 determInatIon of equIvaLentS for cIrcuItS wIth 
dependent SourceS
Method-1
(i) Find v
oc
by nodal analysis or mesh analysis or superposition principle.
(ii) Find i
sc
by nodal analysis or mesh analysis or superposition principle.
(iii) Obtain R
o
by R
v
i
o
oc
sc
=
Method-2
(i) Find v
oc
by nodal analysis or mesh analysis or superposition principle.
(ii) Assume that a current source of 1 A is applied to the output terminals such that the 
current flows into the network at the first terminal. Carry out a node or mesh analysis 


5.26
Circuit Theorems
and find out the voltage appearing at first terminal with respect to second terminal. The 
numerical value of this voltage gives the value of R
o
.
(iii) Determine i
sc
by i
v
R
sc
oc
o
=
Method-3
(i) Find i
sc
by nodal analysis or mesh analysis or superposition principle.
(ii) Assume that a voltage source of 1 V is applied to the output terminals with positive 
polarity at the first terminal. Carry out a node or mesh analysis and find out the current 
flowing into the first terminal. The numerical value of this current gives the value of 
G
o
=
1/R
o
.
(iii) Determine v
oc
by v
R i
oc
o sc
=
example: 5.6-1
Find the Thevenin’s equivalent of the circuit in Fig. 
5.6-1 with respect to the terminals a and b and 
thereby find the ratio of v
x
(t) to v
s
(t) when a resistor 
of 2k
W
is connected across the output. The circuit is 
the low-frequency signal model for an RC-coupled 
common emitter amplifier using a bipolar junction
transistor.
Solution
The first method is used in this example. Let b be the 
reference node and let the node voltage at top end of 
5k
W
be v
1
as marked in the figure. Then, 
i
v
v
v
i
v
v
x
x
x
x
x
= ×

= − ×
= −

= −

1 10
0 0005
2 10
200
0 0005
20
3
1
5
1
(
.
)
(
.
)
and
00
0 1
0 9
200
222 2
0 0005
0 11
1
1
1
1
v
v
v
v
v
v
v
v
x
x
x
x
+

= −

= −

= −
.
.
.
.
.
Now writing KCL at the node where v
1
is assigned,
0 2 10
1
0 11
1 10
0 02
0
0 021
3
1
3
1
1
.
(
(
. ))
. (
( ))
. ., .
×
+ − −
× ×
+

=


v
v
v
v t
i e
s
331
0 02
0 9385
1
1
v
v t
v
v t
s
s
=
∴ =
.
( )
.
( )
Since v
x
=
-
222.2 v
1
v
x
=
-
208.5 v
s
(t
Therefore v
oc
=
-
208.5 v
s
(t)
When the terminals 
a
-

 are shorted, v
x
=
0, and therefore the independent voltage source at the 
input side is zero-valued. The value of v
1
under this condition is given by,
v
k
k
k
k
v t
v t
s
s
1
5
1
50 5
1
0 9434
=
+
=
||
||
( )
.
( )
Fig. 5.6-1 
Circuit for Example 5.6-1
b
a
50 

1 k

5 k

2 k

+

+

+

i
x
i
x
v
x
v

(
t
)
v
1
0.0005
100
v
x


Determination of Equivalents for Circuits with Dependent Sources 
5.27
Now the current i
x
is 0.9434
× 
10
-
3
v
s
(t), and hence the current in the dependent source at the 
output side is 0.09434v
s
(t). All this current flows out of 

to a through the short-circuit. Hence 
i
sc
(t
=
-
0.09434v
s
(t).

=
=
=

R
v
i
v t
v t
o
oc
sc
s
s
208 5
0 09434
2 21
.
( )
.
( )
. k
The two equivalent circuits are shown in Fig. 5.6-2.
(a)
2.21 k

208.5 
v

(
t
)
b
a
+

2.21 k

(b)
b
a
0.09434 
v

(
t
)
Fig. 5.6-2 
(a) Thevenin’s equivalent circuit for the amplifier in Example 5.6-1 (b) 
Norton’s equivalent circuit
If a load resistance of 2k
W
is connected at the output, then the output voltage will be 

×
+
= −
208 5
2
2 2 21
99 05
.
( )
.
.
( )
v t
v t
s
s
. Hence the ratio between output and input (i.e., the gain of the 
amplifier) is – 99.05.
example: 5.6-2
The equivalent circuit of DC current source realised 
using a transistor and few resistors is shown in Fig. 
5.6-3. The design is expected to deliver –2mA at a
Find the Norton’s equivalent circuit for this current 
source design.
Solution
We find the short-circuit current at output first. The 
circuit for this is shown in Fig. 5.6-4. 
0.0005
2.15 V
b a
100 k

1 k

1 k

5 k

100
+

+
+


i
x
i
x
i
SC
v
x
v
x
Fig. 5.6-4 
Circuit for determining short-circuit current in Example 5.6-2 
Fig. 5.6-3 
Circuit for Example 5.6-2
0.0005 
v
x
2.15 V
b
a
100 k

1 k

1 k

5 k

100
+

+

+

i
x
i
x
v
x


5.28
Circuit Theorems
We solve this circuit by mesh analysis. The current into 1k//100k (
=
0.99k) is 101i
x
.We will assume 
that the unit of i

is in mA. Therefore the KVL in the first mesh is

+ × +
× −
×
+
×
=
=
2 15 6
0 0005
0 99 101
0 99 101
0
105 94
.
.
( .
)
.
. .,
.
i
i
i
i e
i
x
x
x
x
22 15
0 0203
.
.
⇒ =
i
x
mA
Therefore, i
i
sc
x
= −
= −
100
2 03
.
mA
To find R
o
We assume that we are injecting 1 mA into the network from terminal a after deactivating the circuit. 
We determine the voltage v
ab
. This voltage directly gives R

in k
W
units. Refer to the circuit in Fig. 5.6-5 (a).
0.0005
100
1 mA 2.03 mA
(b)
(a)
a
a
b
e
b
5.13 M

1 k

1 k

5 k

100 k

+

+

i
x
i
x
v
x
v
x
Fig. 5.6-5 
(a) Circuit for determining Thevenin’s equivalent resistance in Example 5.6-2 
(b) The Norton’s equivalent circuit required
Let i
x
be in mA. The current in 100k resistor is 1

100i
x
(by applying KCL at node a) and therefore 
v
x
=
100

10
4
i
x
V. The current into 1k resistor at node e is (1

 i
x
) mA and hence voltage of node e 
with respect to node b is (1

 i
x
) V. Now applying KVL in the first mesh,
5
0 0005
100 10
1
0
0 5025
100 10
4
i
i
i
i
i
v
x
x
x
x
x
x
+ +
×

+ +
= ∴ = −
∴ =

.
(
) (
)
,
.
mA
44
5125
5125
1 0 5025
5125 5
i
v
v
v
R
x
ab
x
e
o
=

= + =
+ −
=

volts and
volts
(
.
)
.
==

5125 5
. k
If we really apply 1 mA into the output of the transistor circuit, either the current source we are 
applying will fail to function as a current source or the transistor will fail on overvoltage! But then, 
this is only a ‘thought experiment’ aimed at evaluating R
o
. The Norton’s equivalent circuit for this 
current source design is shown in Fig. 5.6-5 (b). 
example: 5.6-3
Find the Thevenin’s equivalent of the circuit in 
Fig. 5.6-6 with respect to a and b.
Solution
We find the open-circuit voltage across a
-
b first. 
Assume two mesh currents i
1
(mA) and i
2
(mA) in 
the clockwise direction in the first and second mesh, 
respectively. The two mesh equations are
Fig. 5.6-6 
Circuit for Example 5.6-3
a
b
0.5 k

1 k

9 k

100 k

1000
+
+
+



v
x
v
x
v

(
t
)


Reciprocity Theorem 
5.29
100
9
0 5
1000 100
0
1
1
2
2
1
2
2
1
i
i
i
v t
i
i
i
i
i
s
+ −
=
− +
+
+
×
=
(
)
( )
(
)
.
Solving these two equations we get i
1
=
v t
s
( )
.
9624 7
and i
2
=
-
0.9895 v
s
(t).

=
+
×
=
v
i
i
v t
oc
s
0 5
1000 100
9 9
2
1
.
.
( )
To find R
o
We assume that 1 V is applied across a
-
b after deactivating the circuit and find out the current 
drawn by the circuit from this 1 V source. The value of current gives G
o
. The circuit required to solve 
for R
o
is shown as circuit in Fig. 5.6-7 (b).
(b)
(a)
9.9
b
a
b
a
9 k

1 k

1000
0.5 k



100 k

1 V
+
+
+



+

v
OC
R
O
i
v
x
v

(
t
)
v
x
Fig. 5.6-7 
(a) Circuit for determining 
R
o
in Example 5.6-3 (b) The Thevenin’s equivalent
The current drawn from 1 V has two components – one flowing into the 9k
W
resistor and the 
second flowing into 0.5k
W
path. The first component is 1/(9

1/100) 
=
1/9.99 
=
0.1 mA. The value of 
v
x
is given by applying voltage division principle as 
-
1
× 
(100/1)/(9

100//1) 
=
-
0.099 V. Therefore 
the voltage across 0.5k
W
resistor is 1

(
-
0.099
× 
1000) 
=
100 V. Therefore the current flowing into 
0.5k
W
path is 100/0.5 
=
200 mA. Then, the total current drawn from 1 V source is 200.1 mA and the 
value of G
o
is 0.2 S. Therefore, the value of R
o
is 5 
W
.
The Thevenin’s equivalent for the circuit is shown in circuit of Fig. 5.6-7 (b).

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   168   169   170   171   172   173   174   175   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish