Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


partial integral of the form



Download 5,69 Mb.
Pdf ko'rish
bet384/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   380   381   382   383   384   385   386   387   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar


partial integral of the form 
v t
e
t
t
d
t
( )
[
cos
sin
]

+
+

1
2
2
2
2
2
0
0
p
s
w
w
w
s
w
w
s
w
for various values of 
s
and 
w
0
. Figure 13.2-2 shows 
the resulting waveforms for 
s

0.1 and 
w
0

10, 20 and 50.
1
0.5
1
–1
2
(a)
Time(s)
3
1
0.5
1
–1
2
(b)
Time(s)
3
1
0.5
1
–1
2
(c)
Time(s)
3
Fig. 13.2-2 
Partial inversion integral for unit step function for 
s


0.1 and (a) 
w
0

10 (b) 
w
0

20 (c) 
w
0

50
Even a short range of 10 rad/s shows the tendency of the integral to approach step waveform. With 
w
0

50 rad/s the integral has more or less yielded step waveform 

at least in the range –1 s to 4 s. 
We also observe the familiar Gibb’s oscillations at discontinuities. Figure 13.2-3 shows the results of 
partial evaluation of inversion integral for 
s

1 and 
w
0

10, 20 and 50.
This set of simulation result shows that we have to include more and more components in the 
partial integral to converge to unit step waveshape in a given time-interval as we let the components 


Laplace Transforms of Some Common Right-Sided Functions 
13.7
grow at a faster rate, 
i.e.,
for higher values of 
s
. And, keeping 
s
at a fixed value, we would need to 
include more and more frequency components when we increase the time-range over which we want 
convergence. However, we have infinite components at our disposal and it will be possible to include 
enough of them to recover the 
u
(
t
) shape up to any finite 
t
however large it may be.
Therefore, Laplace transform expands a transient right-sided time-function in terms of infinitely 
many complex exponential functions of infinitesimal amplitudes. The ROC of such a Laplace transform 
will include portions of right-half of 
s
-plane and hence the time-domain waveform gets constructed by 
growing complex exponential functions though that appears counter-intuitive.
1
0.5
1
–1
2
(a)
Time(s)
3
1
0.5
1
–1
2
(b)
Time(s)
3
1
0.5
1
–1
2
(c)
Time(s)
3
Fig. 13.2-3 
Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   380   381   382   383   384   385   386   387   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish