Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  Free response of Series



Download 5,69 Mb.
Pdf ko'rish
bet309/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   305   306   307   308   309   310   311   312   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

10.4.5 
Free response of Series 
RL
 circuit
We consider a special case of an RL circuit with zero forcing function in this sub section. Obviously, 
the solution for inductor current in this source-free RL circuit will contain only complementary 
solution. The particular integral is zero since forcing function is zero. The complementary solution 
is of the form Ae
-
a
 
t
where 
a

R/L. Applying initial condition to this solution makes it clear that A 

0 unless the initial condition specified at t 

0
-
is non-zero. Thus, a source-free RL circuit can have a 
non-zero solution only if the inductor has some energy trapped in it at t 

0
-
. This energy storage must 
have been created by some source prior to t 

0
-

(a)

+
+
+
L
R
t
= 0
t
= 0
1 V
v
R
v
L
i
R
i
L
S
2
S
1


i
L(0–)
+
+
L
R
(b)

I
o
v
R
v
L
i
R
i
L


1.0
i
L
I
o
(c)
3
4
2
1
0.5
t
/
τ
(d)
3
4
1
0.5
1.0
–0.5
–1.0
v
R
RI
o
v
L
RI
o
t
/
τ
2
Fig. 10.4-5 
Source-free 
RL
circuit and waveforms


Features of 
RL
Circuit Step Response 
10.21
Consider the circuit in Fig. 10.4-5 (a). The switch S
1
was closed long back and the circuit has 
attained the final inductor current value of 1/R A by the time t 

0
-
is reached. At t 

0, the switch 
S
1
is opened and the switch S
2
is closed simultaneously. Thus, a source-free series RL circuit with an 
initial current of I
0
(which is equal to 1/R A in the circuit in Fig. 10.4-5) is set up at t 

0. The circuit in 
Fig. 10.4-5 (b) is equivalent to the circuit in Fig. 10.4-5 (a) for t 

0
+
.
The expressions for inductor current and circuit voltages are derived as below follows:
i t
Ae
t
i
i
t
L
L
L
for
infinitely large volt
( )
;
( )
( ) (
/
=

=

+
+

t
0
0
0

aage is neither applied nor supported in the circuit)
L

i
(00
0
0
0
0
+

+
=
∴ =

=

=
)
( )
;
( )
( ) (
/
I
A I
i t
I e
t
i t
i t
t
L
R
L
for
R and L a
t

rre in series)
for
By KVL)
R
L
R
v t
RI e
t
v t
v t
t
( )
;
( )
( ) (
/
=

= −

+
0
0
t
The current in the circuit decays exponentially from I
0
to zero with a time constant equal to L/R 
seconds. This is shown in Fig. 10.4-5 (c). The corresponding voltage across inductor is negative valued 
and decays with the same time constant. The circuit voltages are shown in Fig. 10.4-5 (d).
example: 10.4-1
Obtain an expression for voltage across the resistor in an initially relaxed series RL circuit for 
rectangular pulse voltage input defined as v
S
(t

1 V for 0 

t 

and 0 V elsewhere. Plot the response 
for (i) 

0.2
t
, (ii) 

t
and (iii) 

2
t
.
Solution
The differential equation for i
L
(t) for the interval [0
+,
T
-
] is
di
L
L
where 
1
and
dt
i
R
L
L
+
=
= =
=
a
b
a
t
b
1
Particular integral that is valid in the interval [0
+,
T
-
] is 
b
/
a

1/R. The complementary function 
is of the form A e
-
t
 
/
 
t
. The circuit is initially relaxed. Applying initial condition to total solution and 
solving for A, we get the total solution as 
i t
R
e
t T
t
L
for
( )
(
)
/
=

≤ ≤

+

1
1
0
t
(10.4-7)
The inductor current would have followed this expression till there is a change in input source 
function or circuit structure. There is a change in the applied voltage at t 

in the present example. 
The voltage applied for all t 

T

is zero. Thus, the circuit is described by the following differential 
equation for T


t < 

.
di
dt
i
R
L
L
L
where 
1
+
=
= =
a
a
t
0


10.22
First-Order 
RL
Circuits
The particular integral for this equation is zero. The complementary function is again A e

(t
-
T)
 
/
 
t
(but valid only for 

 T
+
) with the value of to be decided. The value of is found out from the value 
of current at t 

T
+
.
However, since there was no impulse voltage involved in the circuit at t 

T, the 
value of current at t 

T

and t 

T
-
will be same. This value can be obtained by substituting t 

T in 
Eqn. 10.4-7. 

=
=


=
+

Initial condition for current at 
L
t T
R
e
i t
T
1
1
1
(
)
( )
/
t
R
R
e
e
T
t
T
t T
(
)
/
(
)/
1

≤ < ∞

− −
+
t
t
A for
(10.4-8)
Therefore, the expression for v
R
(t) is
v t
e
t T
e
e
T
t
T
t T
R
for 
for 
( )
(
)
(
)
(
(
)
=

≤ ≤

≤ < ∞




=

+




+
1
0
1
a t
a
a
11
0
1
1

≤ ≤

≤ < ∞




=


+


− −
+
e
t T
e
e
T
t
e
t
T
t T
/
/
(
)/
)
(
)
(
t
t
t
for 
for 
−−
+




+
≤ ≤

≤ < ∞




t
T
t
T
t T
e
e
T
t
n
n
n
n
for 
for 
)
(
)
(
)
0
1
The subscript ‘n indicates normalisation with respect to 
t
. The plots of resistor voltage with 
normalised time for various T/
t
ratios are shown in Fig. 10.4-6.
= 0.2
3
2
1
0.8
1
0.6
0.4
0.2
V
R
(
t
)
V
S
(
t
)
T
/
τ
t/
τ
= 1
3
4
2
1
0.8
1
0.6
0.4
0.2
V
R
(
t
)
V
S
(
t
)
T
/
τ
t/
τ
= 2
3
4
2
1
0.8
1
0.6
0.4
0.2
V
R
(
t
)
V
S
(
t
)
T
/
τ
t/
τ
Fig. 10.4-6 
Single pulse response of 
RL
circuit in Example: 10.4-1 
example: 10.4-2
Solve for i and v as functions of time in the circuit in Fig. 10.4-7.
Solution
This circuit was already in DC steady-state at t 

0. At t 

0, the 
switch closes, thereby forming a source-free RL circuit on the 
right side and a simple resistive circuit on the left side. These 
two circuits do not interact after t 

0 except that the current 
Fig. 10.4-7 
Circuit for 
Example: 10.4-2 
10 mH
10 V
10 

10 

t
= 0
+
+


S
i
v


Features of 
RL
Circuit Step Response 
10.23
through the switch will be a combination of the currents from 
these two circuits.
Inductor is a short for DC steady-state. Therefore, the 
initial current in the inductor at t 

0
-
was 10V/20
W

0.5A 
from top to bottom. Since the switching at t 

0 does not 
involve impulse voltage, the inductor current remains at 0.5A 
at t 

0

too. 
Thus, a source-free RL circuit with initial current of 0.5A 
is set up at t 

0. The various current components in the circuit 
after t 

0 are marked in Fig. 10.4-8.
i
i
e
t
t
1
2
1000
0 5
0
=
=
=



+
10V
10
1A ;
A for
The current through

.
the switch
A for
i
i
i
e
t
v
di
t
=
− = −

=

+
1
2
1000
2
1 0 5
0
0 01
(
.
)
.
ddt
e
t
t
= −


+
5
0
1000
V for
example: 10.4-3
Solve the circuit in Fig. 10.4-9 for the current through the switch as a function of time.
15 mH
(a)
15 V
10 

10 

10 

t
= 0
+

S
i
15 mH
(b)
15 V
10 

10 

10 

+

S
i
i
1
i
2
Fig. 10.4-9 
Circuits for Example: 10.4-3
Solution
In this example, the two meshes in the circuit interact after t 

0. We can solve this circuit in many 
ways – branch-current method, mesh analysis, Thevenin’s equivalent, etc. are some possibilities. First, 
we solve it by branch-current method.
Various branch currents in the circuit are identified in Fig. 10.4-9 (b). We have to get a differential 
equation in the current variable i
Applying KCL at switch node gives us i
2

i
1

i.
Applying KVL in the first mesh gives us 15 

10(i
1

i

i
1

1.5 – i
\
i
2

1.5 – i – i 

1.5 – 2i
Applying KVL in the second mesh gives us 10 i 

10 i
2

0.015 (di
2
/dt

15
-
20i – 
0.03(di/dt)
Therefore, the differential equation governing i is di/dt 

1000 i 

500 for t 

0
+
.
Initial condition for i, i.e., its value at t 

0
+

is needed. Initial value of i
2
is 15V/20
W

0.75A since 
the circuit was in DC steady-state prior to switching. Since i
2

1.5 – 2i, value of i at t 

0

will be 
10 mH
10 V
10 

10 

+
+


S
i
i
1
i
2
v
Fig. 10.4-8 
Circuit for solving 
Example: 10.4-2 


10.24
First-Order 
RL
Circuits
(1.5 – 0.75)/2 

0.375A. The particular integral of the differential equation for i is 500/1000 

0.5A. 
Time constant is 1/1000.
Therefore, i 

(C e
-
1000
 
t

0.5) A. Evaluating C from initial condition for i at t 

0
+
,
we get 
C 

0.375 – 0.5 
= - 
0.125.
Therefore, the switch current i 

(0.5 – 0.125 e
-
1000
 
t
) A for t 

0
+
.
Let us solve the same problem by mesh analysis. The relevant circuit with two mesh currents – I
1
and I
2
– identified is shown in Fig. 10.4-10 (a).
15 mH
(a)
15 V
10 

10 

10 

+

S
I
1
I
2
15 mH
R
th
= 15 

+

V
OC
(b)
= 7.5 V
Fig. 10.4-10 
Circuits for mesh analysis and Thevenin’s equivalent analysis in 
Example: 10.4-3 
The two mesh equations are
20
10
15
20
10
0 015
1
2
2
1
2
I
I
I
I
dI
d

=

+
.
tt
I
=
0
1
Eliminating
from second equation using the first eqquation and simplifying, we get
dI
dt
I
2
2
1000
500
+
=
The initial condition for I
2
at t 

0

is same as the initial condition for inductor current at that 
instant. This value is 0.75A.Particular integral is 0.5A. Time constant is 1/1000 s.
I
C e
t
C
I
e
t
t
2
1000
2
1000
0 5
0
0 25
0 5
0 25
=
+

=
=
+

+

(
. )
.
( .
.
)
A for 
and
A ffor 
Using this solution in the first mesh equation
t

+
0
we can get
A for 
Current through t
I
e
t
t
1
1000
1 0 125
0
= +



+
(
.
)
hhe switch 
A for 
=

=



+
I
I
e
t
t
1
2
1000
0 5 0 125
0
.
.
This circuit problem can also be solved by using Thevenin’s theorem. The circuit portion to the left 
of inductor may be replaced by its Thevenin’s equivalent as shown in Fig. 10.4-10 (b). Inductor current 
can be obtained from this circuit. Once inductor current is available, we will be able to get back to the 
switch current using KCL or KVL. This is illustrated now in the following.
The initial current in the inductor is 0.75A. The circuit in Fig. 10.4-10 (b) is a simple series RL 
circuit and its particular integral is 7.5/15 

0.5A. Its time constant is 15mH/15
W

1ms. Therefore, its 


Features of 
RL
Circuit Step Response 
10.25
solution is 

C e
-
1000
 
t

0.5. Evaluating the initial condition constant C and completing the solution, 
we get, inductor current 

0.5 

0.25 e
-
1000
 
t
A.
i
e
t
L
A
Voltage across 10 in the switch path 
=
+
=

0 25
0 5
1000
.
.

110 (
V
C
×
+
+
× −
= −




0 25
0 5
0 015
250
5 1 25
1000
1000
1000
.
. )
.
(
)
.
e
e
e
t
t
t
uurrent through the switch (
/
= −
=


5 1 25
10
0 5 0 125
1000
.
)
.
.
e
e
t
V

−−
+

1000
0
t
t
A for 
We derived the differential equations governing three variables in the circuit – the branch current 
in the central limb, second mesh current and the inductor current in the process of solving this circuit. 
The left-hand side of all the three differential equations had the same coefficients. (Why?)
We also notice that the time constant of the circuit can be easily found as L/R
th
where R
th
is the 
Thevenin’s equivalent resistance appearing across the inductor. However, Thevenin’s equivalent is 
found by deactivating all independent sources. Therefore, the time constant of a single-inductor 
circuit can be found by replacing all independent voltage sources by short-circuits and all independent 
current sources by open circuits and finding the equivalent resistance connected across the inductor. 
We illustrate this procedure further in the next example.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   305   306   307   308   309   310   311   312   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish