Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet191/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   187   188   189   190   191   192   193   194   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 6.4-1
The periodic 50Hz voltage waveform applied across a 

W
resistor is shown in Fig. 6.4-1. (i) Find the average 
power delivered to the load. (ii) Find the DC voltage 
that will deliver the same average power. (iii) Find 
the amplitude of a 50 Hz sinusoidal voltage that will 
deliver the same average power.
Solution
(i) The power waveform will be described by the 
following equation for the first period:
p t
t
t
t
t
( )
=
(
)
≤ ≤

(
)
< ≤


2000 200
0
5
2000 2 200
5
10
2
2
for
ms
for ms
ms


t
(ms)
v
(
t
)
5 10 15 20 25 30 35 40
100
50
–50
–100
Fig. 6.4-1 
Applied voltage waveform 
in Example 6.4-1


6.22
Power and Energy in Periodic Waveforms 
Energy delivered in one cycle of p(t
=
The area under p(t) over one cycle (10ms) of p(t
=

×
area under p(t) for 0 to 5ms interval 
=
×
= × ×
×
÷ =

2
8 10
2 8 10
0 005
3 6 67
7
0
0 005
2
7
3
.
.
.
t dt
J
Therefore, Cycle Average Power 
=
6.67 J/0.01 s 
=
667 W
Therefore, P
av
=
667 W
(ii) The required DC voltage V is such that V
2
/5 
=
667. Therefore, V 
=
57.74 V
(iii) Let v(t
=
V
m
sin 100
p
 t. Then, i(t
=
0.2 V
m
sin 100
p
 t and p(t
=
0.2 V
m
2
sin
2
w
t W. Therefore, 
cycle average power 
=
0.2 V
m
2
÷

=
0.1 V
m
2
. This has to be 667 W. Therefore, the required 
amplitude of sinusoidal voltage is V
m
=
81.67 V.
example: 6.4-2
A 12V battery delivers power to a power electronic system 
through its internal resistance of 0.05
W
as shown in Fig. 6.4-2. 
The figure also shows that the current drawn by the load is a 
pulsed current with period of T 
=
1 ms. The load draws the 
current in such a way that the average value of current is kept 
constant at 10 A while d and I vary under different operating 
conditions. Calculate the average power delivered by the source, 
average power delivered to load and efficiency for (i) I 

100 A 
(ii) 

40 A, (iii) 

12 A. and (iv) 

10 A.
Solution
Since the average value of i(t) is kept constant, Id must be 
constant.
Average power delivered by the source is
P
i t dt
I dt
Id
s
d
=
×
=
=
=


1
0 001
12
1000
12
12
0
0 001
0
0 001
.
( )
.
.
watts
120 W
W.
This value is independent of I and 
d as long as the average value of current is kept at 10 A. The power delivered by a constant voltage 
source is equal to product of source voltage and the cycle average value of current.
Average power dissipated in the internal resistance, P
R
, is
P
i t
dt
I dt
R
d
=
×
[ ]
=
×
=


1
0 001
0 05
1
0 001
0 05
0 0
2
0
0 001
2
0
0 001
.
.
( )
.
.
.
.
.
55
0 05 10
0 5
2
I d
I
I
=
× × =
.
.
W
We have used the fact that Id 
=
10 A in the last step.
(i) I 
=
100 A. Therefore, d 
=
10/100 
=
0.1.
P
R
=
0.5 
× 
100 
=
50 W., P
S
=
100 W, 
\
Load power, P
L
=
100 – 50 
=
50 W
Efficiency 
=
50%
(ii) I 
=
40 A. Therefore, d 
=
10/40 
=
0.25 
P
R
=
0.5 
× 
40 
=
20 W. P
S
=
100 W, 
\
Load power, P
L
=
100 – 20 
=
80 W
Efficiency 
=
80%
i
(
t
)
i
(
t
)
12 V
0.05 

A Power-
Electronic
System
d
T
1
T
(1+d)
T
(2+d)
T
t
(A)
I
2
T
R
+

Fig. 6.4-2 
Circuit and 
waveform for 
Example 6.4-2


Average Power in Periodic Waveforms 
6.23
(iii) I 
=
12 A. Therefore, d 
=
10/12 
=
0.833 
P
R
=
0.5 
× 
12 
=
6 W. P
S
=
100 W, 
\
Load power, P
L
=
100 – 6 
=
94 W
Efficiency 
=
94%
(iv) I 
=
10 A. Therefore, d 
=
10/10 
=
1, i(t) becomes a constant current of 10 A. 
P
R
=
0.5 
× 
10 
=
5 W. P
S
=
100 W, 
\
Load power, P
L
=
100 – 5 
=
95 W
Efficiency 
=
95%
example: 6.4-3
A DC voltage source of V V delivers a current i(t) to an external load through its internal resistance 
of R 
W
. Show that, among the infinite possible periodic waveforms for i(t) with the same value 
of cycle average, i(t
=
constant is the waveform that results in minimum loss and maximum 
efficiency. 
Solution
Let be the cycle average value of a periodic i(t). Then i(t) can be expressed as a constant plus a pure 
alternating component as i(t
=

+
i
ac
(t), where i
ac
(t) is bipolar and has equal areas under positive 
half-cycle and negative half-cycle. Let P
S 
be the average power delivered by the source, P
L 
be the 
average power delivered to the load and P
R
be the average power dissipated in R. Average powers 
are equal to corresponding cycle average powers if i(t) lasts for a long time compared to its period. 
Then,
P
T
V I i t dt
T
S
ac
=
+

1
0
[
( )]
, where T is the period of i
ac
(t). The cycle average value of a pure 
alternating waveform with equal magnitude areas under its positive and negative half-cycles will be 
zero. Therefore, P
S 
=
VI W.
P
T
R I i t
dt
T
RI dt
T
RIi t dt
T
R i
T
T
T
R
ac
ac
ac
=
+
=
+
+



1
1
1
2
1
2
0
2
0
0
(
( ))
( )
( (( ))
t
dt
T
2
0

Since the instantaneous power in R contains a term proportional to i
ac
(t), its basic period is T and 
not 0.5T. This is why the integration in the above step is from 0 to T. The second integral goes to zero 
since cycle average of a pure alternating component is zero.

=
+


P
T
RI dt
T
R i t
dt
T
T
R
ac
1
1
2
0
2
0
( ( ))
The quantity [i
ac
(t)]
2
is always positive and hence the second integral in the previous equation will 
be positive-valued. Therefore,
P
T
RI dt
T
R


1
2
0
with the equality sign applicable only when i
ac
(t
=
0 for all t

i.e., only when i(t
=
I
a constant.
Therefore, for a given amount of average current drawn from a DC source, the power loss in the 
internal resistance and connecting link resistance will be a minimum when the energy is drawn at a 
constant rate – i.e., power delivered is kept constant by keeping current constant.


6.24
Power and Energy in Periodic Waveforms 
The optimum way to draw power from a DC source is by drawing a DC current. Similarly, 
the optimum way to charge a battery is by delivering a constant current into it. No 
other current waveform is as energy efficient as the DC current waveform when drawing 
power from a DC voltage source or delivering power to it.
example: 6.4-4
An AC voltage source (i.e., a sinusoidal source) v(t
=
325 sin100
p
 t V delivers 1 kW of average power 
to a load through a resistance of 5 
W
. This resistance is the sum of the internal resistance of the source 
and the resistance of cable connecting the load to the source. Assume that the load draws a current 
i(t
=
I
m
sin(100
p
 t 
+
q
) and that I
m
and 
q
can be varied keeping the power delivered by the source at 1 
kW itself. Find the amplitude of current, power dissipated in the series resistance and the efficiency of 
power transfer when (i) 
q
=
-
80
°
(ii) 
q
=
45
°
(iii) 
q
=
-
30
°
and (iv) 
q
 
=
0
°
.
Solution
Let v(t
=
V
m
sin 
w
t and i(t
=
I
m
sin (
w
t 
+
q
). Then the average power delivered by the source 
=
V I
m m
2
cos
q
W. (We have derived this many times in earlier sections.). The average power delivered 
depends on magnitude of phase difference between voltage and current waveforms. But it does not 
depend on the sign of phase difference.
The power delivered by the source is kept constant at 1000 W in this example. Therefore, I
m
cos
q
=
1000/325 
=
3.077 A.
Let P
R 
be the average power dissipated in the resistor. Then,
P
T
R i t
dt
RI
t
dt
RI
T
R
m
m
=
=
+
=




2
1
2
2
0
0 5
2
0
2
2
0
[ ( )]
sin (
)
.
w
p
w
q
w
p
p
w
p
w
11
2
2
2
2
2
cos(
)
w
q
t
dt
RI
+




=
m
watts
But I
m
=
3.077/cos
q
. Therefore, P
R
=
4.734R/cos
2
q
. Now we evaluate the numbers for the various 
cases:
(i)
q
=
-
80
°
. Then, cos
q
=
0.1736, 
\
I
m
=
3.077/0.1736 
=
17.72 A, 
\
P
R
=
4.734 
× 
5/0.1736
2
=
785.4 W, P
S
=
1000 W, 
\
P
L 
=
214.6 W and efficiency 
=
21.46 %.
(ii)
q
=
45
°
. Then, cos
q
=
0.707, 
\
I
m
=
3.077/0.707 
=
4.35 A, 
\
P
R
=
4.734 
× 
5/0.707
2
=
47.3 W, 
P
S
=
1000 W, 
\
P
L 
=
952.7 W and efficiency 
=
95.27 %.
(iii)
q
=
-
30
°
. Then, cos
q
=
0.866, 
\
I
m
=
3.077/0.1736 
=
3.55 A, 
\
P
R
=
4.734 
× 
5/0.866
2
=
31.6 W, P
S
=
1000 W, 
\
P
L 
=
968.4 W and efficiency 
=
96.84 %.
(iv)
q
=
0
°
. Then, cos
q
=
1, 
\
I
m
=
3.077 A, 
\
P
R
=
4.734 
× 
5/1
2
=
23.7 W, P
S
=
1000 W, 
\
P
L 
=
976.3 W and efficiency 
=
97.63 %.
Increasing magnitude of phase difference between voltage and current makes power transfer to the 
load highly inefficient.


Effective Value (RMS Value) of Periodic Waveforms 
6.25
example: 6.4-5
Show that the fixed amount of average power delivered by a sinusoidal voltage source through its 
internal resistance and connecting link resistance to a load will reach the load with minimum loss and 
maximum efficiency when the current drawn by the load has zero phase difference with respect to the 
source voltage.
Solution
Let v(t
=
V
m
sin 
w
t and i(t
=
I
m
sin (
w
t 
+
q
). Let the total series resistance in the path be R. Then 
the average power delivered by the source 
=
V I
m m
2
cos
q
W. The average power dissipated in R is 
0.5RI
m
2
W (see Example 6.4-4).
But the power delivered by the source is stated to be fixed. Let this fixed value be P W. Then 0.5 
V
m
I
m
cos
q
=
P. Therefore, I
m
=
2P/(V
m
cos
q
). Therefore, the average power loss in R is 
P
RI
RP
V
R
m
m
=
=
0 5
2
2
2
2
2
.
cos
q
.
The minimum of this loss takes place when cos
2
q
is a maximum

i.e., 
q
 
=
0
°
or 180
°

q
=
180
°
is 
relevant when the load is delivering power to source. 
Therefore, when a sinusoidal voltage source is delivering power to load, a given amount of 
source power is transferred to load with minimum losses and maximum efficiency when 
the load draws current from source at zero phase difference at the source terminal.
This fact has great significance in Electrical Power Distribution systems and Electricity tariff 
structure.

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   187   188   189   190   191   192   193   194   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish