Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd


  the principles of ‘Virtual short’ and ‘Zero Input current’



Download 5,69 Mb.
Pdf ko'rish
bet76/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   72   73   74   75   76   77   78   79   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

2.7.3 
the principles of ‘Virtual short’ and ‘Zero Input current’
We continue with the analysis of circuit in Fig. 2.7-2(b). We have ascertained that the feedback involved 
in this circuit is negative in sense. Hence we expect the output to be zero when the input is zero. Now, 
we set out to find the output in terms of input when the input is non-zero. Assume that the Opamp 
is ideal. Hence, its input resistance is an open-circuit, output resistance is a short-circuit and its gain 
is infinity. The gain is taken as A first and is sent to infinity at the end of circuit solution. The circuit 
is redrawn with the Opamp replaced by its ideal equivalent circuit as in the circuit in Fig. 2.7-3(b).
We derive the equation for output as follows:
(a)
+
v
s
R
2
R
1
v
o
β
v
d
v
o
+
+
+




(b)
+
+
+
v
s
v
d
Av
d
R
2
R
1
v
o
β
v
o
+




Fig. 2.7-3 
(a) A single Opamp Amplifier circuit (b) Circuit with Opamp replaced by its 
equivalent circuit
www.TechnicalBooksPDF.com


2.28
Basic Circuit Laws
v
v
v
R
R
R
v
Av
A v
v
v
A
A
v
v
d
s
o
o
d
s
o
o
s
d
= −
=
+
=
=

∴ =
+
=
b
b
b
b
where
and
1
1
2
1
(
)
11
1
+
A
v
s
b
We observe that the differential input v
d
is only 
1
1
+
A
b
times that of what it would have been had 
the source been applied directly to Opamp as in the circuit in Fig. 2.7-2(a). Since the Opamp gain 
is very large for a practical Opamp and is infinity for an ideal Opamp, we evaluate the limit of these 
expressions as 


. We get,
v
A
A
v
v
R
R
v
v
A
v
o
A
s
s
s
d
A
s
=
+
=
= +








=
+
=
→∞
→∞
lim
lim
1
1
1
2
1
1
1
b
b
b
and
00
Hence, the gain of overall amplifier goes to 1
+
R
2
/R
1
. It is decided by external components entirely. 
And the differential input voltage goes to zero.
Why does the differential input voltage go to zero? If the Opamp is in linear range, its differential 
input voltage has to be equal to its output divided by the gain. The negative feedback present in the 
circuit resists any change in the output. Consider the situation when a certain voltage is suddenly 
applied to the input. Then the differential voltage increases suddenly since the Opamp will take a little 
time to adjust its output. The large differential voltage causes the Opamp output to increase. Increasing 
Opamp output reduces the differential input voltage through the feedback mechanism. Finally, a steady 
state comes up in the circuit when the output is such a value that the difference between the source 
voltage and the fed back voltage is exactly equal to the output divided by gain. The circuit attains 
equilibrium under that condition. Any deviation from this equilibrium condition will be corrected by 
negative feedback action. Since the gain is large, it requires only a small differential voltage to remain 
at this equilibrium. For instance, let v
s
be 0.1 V,  
=
250,000 and 
b
=
0.1. Then v

=
0.1
× 
1/(1 

25000) 
=

m
V and v
o
=
0.1
× 
250000/(1 

25000) 
=
999960 
m


1 V. It requires only 4 
m
V of v
d
to justify 

1 V of output since the gain is 250,000. Now if the gain is increased further, the value of v
d
goes 
down further and v
o
approaches closer to 1 V. In the limit when gain goes to infinity, v
d
goes to zero 
and v
o
goes to 1 V.
But will v

be zero if v
s
is 10 V? No, since the amplifier will saturate and will be in the non-linear 
range of operation. The large gain that is effective in linear range of operation is not available when 
the Opamp is operating in voltage-limited or current-limited or slope-limited modes of operation. 
Hence, we may conclude that the differential voltage across the non-inverting input terminal and 
the inverting input terminal of an Opamp is arbitrarily close to zero if the Opamp is under negative 
feedback and is in its linear range of operation. Thus, the two input terminals, though are not 
connected together, are virtually at the same potential under these conditions and behave as if they 
are shorted together. Therefore, there is a virtual short across the input terminals of an Opamp 
working in its linear range of operation in a negative feedback circuit. We emphasise this principle
in the following.
www.TechnicalBooksPDF.com


KVL and KCL in Operational Amplifier Circuits 
2.29

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   72   73   74   75   76   77   78   79   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish