Copyright 20 13 Dorling Kindersley (India) Pvt. Ltd



Download 5,69 Mb.
Pdf ko'rish
bet310/427
Sana21.11.2022
Hajmi5,69 Mb.
#869982
1   ...   306   307   308   309   310   311   312   313   ...   427
Bog'liq
Electric Circuit Analysis by K. S. Suresh Kumar

example: 10.4-4 
Show that the current in 18mH inductor in the circuit in Fig. 10.4-11 (a) will go to zero as t 
→ ∞
. Also, 
find the inductor current and currents delivered by the voltage sources as functions of time. Find out 
how long we have to wait for the inductor current to fall below 100mA.
t
= 0
14 V
7 V
N
M
(a)
18 mH
12 





i
S
i
1
i
2
14 V
7 V
0 V
(b)
(c)
12 



12 



Fig. 10.4-11 
Circuits for Example: 10.4-4 (a) Circuit for the problem (b) Circuit for finding 
Thevenin’s equivalent (c) Thevenin’s equivalent
Solution
First, we find the time constant effective after 

0
+
.
The Thevenin’s equivalent of the circuit connected 
across the inductor is evaluated by using the circuit in Fig. 10.4-11 (b) and the resulting equivalent is 
shown in Fig. 10.4-11 (c). Since the voltage source in Thevenin’s equivalent is zero-valued, the inductor 
current will have a zero steady-state value. The time constant of the circuit is 18mH/12
W

1.5ms.
We find the initial condition for inductor current next. The circuit was in steady-state prior to 
switching at t 

0. Inductor is replaced by a short-circuit DC steady-state. Therefore, the inductor 
current at t 

0
-
must have been 7/14 

0.5A and it will be 0.5A at t 

0

since there is no impulse 
voltage involved in the switching.


10.26
First-Order 
RL
Circuits
Now, the circuit is a series RL circuit with a known initial condition and DC sources. We know 
the solution for such a circuit. It is of general format – A e
-
t/
t

C

where C is the particular integral 
(therefore, the DC steady-state value) and A is the arbitrary constant to be found out from initial condition. 
This is the general format of solution for any circuit variable in a first-order circuit with DC excitation.

=
+
=
=

=

+

i t
Ae
t
i t
t
i t
e
t
t
t
( )
;
( )
.
( )
.
;
/ .
/ .
1 5
1 5
0
0 5
0
0 5
in ms
at
A
in ms and 
Voltage across inductor 0.018
t
di
dt
e
t


=
= −
+

0
6
1
/ ..
;
5
0
V
in ms and 
t
t

+
(10.4-9)
We have two ways to find the currents delivered by the voltage sources 

i
1
and i
2
. In the first 
method, we find the voltage across M and N in circuit Fig. (a) as v
MN

8i 

0.018 di/dt and then find 
i
2
as (7

v
MN
)/6 and i
1
as (v
MN
– 14)/12.
In the second method, we realise that all variables in this circuit will have a A e
-
t/
t
term and a 
steady-state term and that we can find the arbitrary constant A if we know the value of the particular 
variable at 0
+
.
Therefore, we set out to find the initial and final (i.e., steady-state) value of the source 
currents. The inductor current was at 0.5A at t 

0
+
.
The voltage across inductor at that instant is –6V 
from Eqn. 10.4-9. Therefore, v
MN

8
×
0.5 


= -
2 V at t 

0
+
.
Therefor, initial value of i
1
at t 

0


(
-
2 – (
-
14))/12 

1A. Final current in inductor is zero. Hence, final current in both sources will be 
same and equal to (7

14)V/(6

12)
W

7/6 

1.167A.
Therefore, our required currents are 

=
+
=
=

=


+
i t
Ae
t
i
t
i t
t
1
1 5
1
1
1 167
1
0
1 167
( )
.
;
( )
.
/ .
A
in ms with 
A at
00 167
0
1 167 0 1
1 5
2
1
.
;
( )
( )
( )
.
.
/ .
e
t
t
i t
i t
i t
t

+

=
+
=

A
in ms and
667
0 5
1 167 0 333
1 5
1 5
1 5
e
e
e
t
t
t
t
t



+
=
+

/ .
/ .
/ .
.
.
.
;
A
A
in ms and
00
+
3
4
2
Voltage across inductor
(a)
(b)
Volts
Time in ms
Time in ms
v
MN
1
3
4
2
1
1
–1
–2
–3
–4
–5
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Amps
–6
2
3
4
i
1
i
2
i
Fig. 10.4-12 
Waveforms of (a) voltages and (b) source and inductor currents in 
Example: 10.4-4 
These are plotted in Fig. 10.4-12. The time required for inductor current to go below 100mA is 
found as follows: 
0 1 0 5
1 5
0 2
1 6094
2 414
1 5
.
.
;
.
ln .
.
.
/ .
=
∴ −
=
= −
=

e
t
t
t
t
A
in ms ,
and
ms


Steady-State Response and Forced Response 
10.27
10.5 
Steady-State reSponSe and Forced reSponSe
The total response in an RL circuit with any forcing function will consist of two terms – the transient 
response (or natural response) and the forced response. The transition from initial state of the circuit 
(which is encoded in a single number in the form of initial inductor current specification at t 

0
-

to the final state (in which only forced response will be present) is accomplished with the help of the 
transient response. Now, we introduce a new term called steady-state response and relate it to the 
response terms we are already familiar with.
Our study of the solution of differential equation describing the RL circuit has shown us that 
the total response will always contain two components – the transient response and the forced 
response. Of course, forced response will be zero if forcing function is zero i.e., in a source-
free circuit. Similarly, the transient response term may become zero under certain suitable initial 
condition values. But these are special situations and, in general, there will be two terms in the total 
response. This is true not only for an RL circuit but also for any linear circuit described by linear 
ordinary differential equations with constant coefficients. Such a circuit of higher order will have 
two groups of terms in its total solution – first group constituting transient response containing 
one or more terms and the second group constituting forced response containing one or more 
terms depending on the type of forcing function. Thus, forced response is a response component 
which is always present in the total response of a circuit except when the forcing function itself is
zero.
We have seen that the transient response of an RL circuit contains exponential function of the form 
e
-
a
 
t
where 
a
is a positive number decided by and L. Such an exponential function with negative 
real index will taper down towards zero as t approaches 

. Hence, we expect the transient response 
in an RL circuit to vanish with time quite irrespective of the forced response component. Therefore, 
we expect that there will only be the forced response component active in the circuit in the long 
run i.e., after sufficient time had been allowed for the transient response to die down. When all the 
transient response terms in all the circuit variables in the circuit have died down to negligible levels 
(they never die down to zero) and the only response component in all the circuit variables is the forced 
response component, we say the circuit has reached the steady-state with respect to the particular 
forcing function that was applied to the circuit. Notice that under steady-state conditions the transient 
response terms should not be present in any circuit variable at all. Or, in other words, there cannot 
be a circuit which attains steady-state in some of its variables and does not attain steady-state in yet
others. 
Therefore, a circuit will reach steady-state if and only if all its transient response terms are of 
decreasing type. Moreover, the only response that will continue in the circuit after it has reached 
steady-state is the forced response component. Therefore, steady-state response is same as forced 
response with the condition that the steady-state will exist only if all the transient response terms are 
of damped nature 

i.e., decreasing functions of time. Thus, steady-state response is another name for 
forced response when transient response is assured to die down to negligible levels. Forced response 
will always be present; but steady-state response need not be.
Consider the circuit in Fig. 10.5-1. The 1V source on the left side has set up an initial current of 
1A in the inductor of 1H at t 

0
-
. The switch S
1
is opened and switch S
2
is closed at t 

0 to apply a 
1V source right across the inductor. The current in the inductor is shown in Fig. 10.5-1 (b). We note 
that with a bounded input (1V DC source is a bounded input), we get a current in the inductor which 
is not bounded. Also, the transient response (1e
-
t
) does not decrease with time. Therefore, there is no 
steady-state in this circuit though there is a forced response. 


10.28
First-Order 
RL
Circuits
(a)
(b)
+
1 V
1 V
L
= 1 H

+

+

t
= 0
R
= 1 

t
= 0
S
1
R
1
v
L
i
L
S
2
3
2
1
1
2
3
4
5
i
L
(A)
Slope = 1 A/s
t
(s)
Fig. 10.5-1 
A circuit with no steady-state and its step response

Download 5,69 Mb.

Do'stlaringiz bilan baham:
1   ...   306   307   308   309   310   311   312   313   ...   427




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish