Combinatorics and computing



Download 131,78 Kb.
bet6/9
Sana11.02.2022
Hajmi131,78 Kb.
#443224
1   2   3   4   5   6   7   8   9
Bog'liq
Diskret (maruza)

9.5 Combinations


In Section 9.4, we investigated the problem of selecting a certain number of items from a set, where the order in which the items are selected is taken into account. A more common problem in practice is to ascertain the number of ways in which a selection can be made, without distinguishing between different orders. Problems of this kind are called combinations problems.
For example, suppose that the rules of a lottery specify that entrants must select eight different numbers chosen from the natural numbers from 1 to 45 inclusive. In how many different ways can this selection be made?


As a first step towards solving the problem, we can calculate the number of choices if order is taken into account; it is 45P8 . This number is not the answer to the problem, of course, because we have counted the same selection many times, once for each different way in which the eight numbers can be arranged. In fact, we can state precisely how much too large it is; since there are 8! ways of arranging the eight chosen numbers, 45P8 is too large by a factor of 8!. The correct answer to the problem is therefore 45P8 / 8!, which equals 215 553 195.
This example gives us a clue to the solution of the combinations problem in general. Suppose we want to select r items without replacement from a set of n items, without taking into account the order in which the selection is made. (In the language of sets, we want to choose a subset with r elements from a set with n elements.) In how many ways can this be done?
The number of selections with order taken into account is nPr. Now, if order is not to be taken into account, then this number is too large by a factor of r!, because r! is the number of permutations of the r selected elements. The correct answer is therefore nPr / r! . Using the fact that

we obtain the following expression as the answer:

This expression is denoted by or nCr . It is the number of ways that r items can be chosen from a set of n items. Equivalently, it is the number of r-element subsets of an n-element set. Given a particular value of n, the values of (as r ranges from 0 to n) are referred to as the nth binomial coefficients, because they occur in the binomial theorem in algebra.
Using the alternative expression for nPr , we obtain another expression for that is generally more useful for computations:




Download 131,78 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish