Цифровые счетчики импульсов


Разработка КСУ (комбинационной схемы управления)



Download 205 Kb.
bet6/7
Sana12.04.2022
Hajmi205 Kb.
#545095
TuriКурсовая
1   2   3   4   5   6   7
Bog'liq
«Цифровые счетчики импульсов»

Разработка КСУ (комбинационной схемы управления)
Для реализации данного счётчика из серии ТТЛШ микросхем К555 я выбрал:
две микросхемы К555ТВ9 (2 JK-триггера с установкой)
одну микросхему К555ЛА4 (3 элемента 3И-НЕ)
две микросхемы К555ЛА3 (4 элемента 2И-НЕ)
одну микросхему К555ЛН1 (6 инверторов)
Данные микросхемы обеспечивают минимальное количество корпусов на печатной плате.

Составление структурной схемы счётчика

Структурная схема – совокупность блоков счётчика, выполняющих какую-либо функцию и обеспечивающих нормальную работу счётчика. На рисунке 7 показана структурная схема счётчика.



Рис. 7 Структурная схема счётчика
Блок управления выполняет функцию подачи сигнала и управления триггерами.
Блок счёта предназначен для изменения состояния счетчика и сохранения этого состояния.
Блок индикации выводит информацию для зрительного восприятия.

Составление функциональной схемы счётчика

Функциональная схема – внутренняя структура счётчика.


Определим оптимальное количество триггеров для недвоичного счётчика с коэффициентом счёта Кс=10.
M = log 2 (Кс) = 4.
M = 4 значит для реализации двоично-десятичного счётчика необходимо 4 триггера.

Простейшие одноразрядные счетчики импульсов

Простейшим одноразрядным счетчиком импульсов может быть JK-триггер и D-триггер, работающий в счетном режиме. Он считает входные импульсы по модулю 2—каждый импульс переключает триггер в противоположное состояние. Один триггер считает до двух, два соединенных последовательно считают до четырех, п триггеров—до 2n импульсов. Результат счета формируется в заданном коде, который может храниться в памяти счетчика или быть считанным другим устройством цифровой техники—дешифратором.




На рисунке показана схема трехразрядного двоичного счетчика импульсов, построенного на JK-триггер ax K155TB1. Смонтируйте такой счетчик на макетной панели и к прямым выходам триггеров подключите светодиодные (или транзисторные — с лампой накаливания) индикаторы, как это делали ранее. Подайте от испытательного генератора на вход С первого триггера счетчика серию импульсов с частотой следования 1 ... 2 Гц и по световым сигналам индикаторов постройте графики работы счетчика.
Если в начальный момент все триггеры счетчика находились в нулевом состоянии (можно установить кнопочным выключателем SB1 «Уст.0», подавая на вход R триггеров напряжение низкого уровня), то по спаду первого же импульса (рис. 45,6) триггер DD1 переключится в единичное состояние—на его прямом выходе появится высокий уровень напряжения (рис. 45,в). Второй импульс переключит триггер DD1 в нулевое состояние, а триггер DD2—B единичное (рис. 45,г). По спаду третьего импульса триггеры DD1 и DD2 окажутся в единичном состоянии, а триггер DD3 все еще будет в нулевом. Четвертый импульс переключит первые два триггера в нулевое состояние, а третий в единичное (рис. 45,д). Восьмой импульс переключит все триггеры в нулевое состояние. По спаду девятого входного импульса начнется следующий цикл работы трехразрядного счетчика импульсов.
Изучая графики, нетрудно заметить, что каждый старший разряд счетчика отличается от младшего удвоенным числом импульсов счета. Так, период импульсов на выходе первого триггера в 2 раза больше периода входных импульсов, на выходе второго триггера — в 4 раза, на выходе третьего триггера — в 8 раз. Говоря языком цифровой техники, такой счетчик работает в весовом коде 1-2-4. Здесь под термином «вес» имеется в виду объем информации, принятой счетчиком после установки его триггеров в нулевое состояние. В устройствах и приборах цифровой техники наибольшее распространение получили четырехразрядные счетчики импульсов, работающие в весовом коде 1-2-4-8. Делители частоты считают входные импульсы до некоторого задаваемого коэффициентом счета состояния, а затем формируют сигнал переключения триггеров я нулевое состояние, вновь начинают счет входных импульсов до задаваемого коэффициента счета и т. д.

показаны схема и графики работы делителя с коэффициентом счета 5, построенного на JK-триггерах Здесь уже знакомый вам трехразрядный двоичный счетчик дополнен логическим элементом 2Й-НЕ DD4.1, который и задает коэффициент счета 5. Происходит это так. При первых четырех входных импульсах (после установки триггеров в нулевое состояние кнопкой SB1 «Уст. 0») устройство работает как обычный двоичный счетчик импульсов. При этом на одном или обоих входах элемента DD4.1 действует низкий уровень напряжения, поэтому элемент находится в единичном состоянии.
По спаду же пятого импульса на прямом выходе первого и третьего триггеров, а значит, и на обоих входах элемента DD4.1 появляется высокий уровень напряжения, переключающий этот логический элемент а нулевое состояние. В этот момент на его выходе формируется короткий импульс низкого уровня, который через диод VD1 передается на вход R всех триггеров и переключает их в исходное нулевое состояние.
С этого момента начинается следующий цикл работы счетчика. Резистор R1 и диод VD1, введенные в этот счетчик, необходимы для того, чтобы исключить замыкание выхода элемента DD4.1 на общий провод.
Действие такого делителя частоты можете проверить, подавая на вход С первого его триггера импульсы, следующие с частотой 1... 2 Гц, и подключив к выходу триггера DD3 световой индикатор.
На практике функции счетчиков импульсов и делителей частоты выполняют специально разработанные микросхемы повышенной степени интеграции. В серии К155, например, это счетчики К155ИЕ1, К155ИЕ2, К155ИЕ4 и др.
В радиолюбительских разработках наиболее широко используют микросхемы К155ИЕ1 и К155ИЕ2. Условные графические обозначения этих микросхем-счетчиков с нумерацией их выводов показаны на рис. 47.

Микросхему К155ИЕ1 (рис. 47,а) называют декадным счетчиком импульсов, т. е. счетчиком с коэффициентом счета 10. Он содержит четыре триггера, соединенных между собой последовательно. Выход (вывод 5) микросхемы — выход ее четвертого триггера. Устанавливают все триггеры в нулевое состояние подачей напряжения высокого уровня одновременно на оба входа R (выводы 1 и 2), объединенные по схеме элемента И (условный символ «&»). Счетные импульсы, которые должны иметь низкий уровень, можно подавать на соединенные вместе входы С (выводы 8 и 9), также объединенные по И. или на один из них, если в это время на втором будет высокий уровень напряжения. При каждом десятом входном импульсе на выходе счетчик формирует равный по длительности входному импульс низкого уровня. Микросхема К155ИЕ2 (рис.48,б)

—двоично-десятичный четырехразрядный счетчик. В нем также четыре триггера, но первый из них имеет отдельные вход С1 (вывод 14) и отдельный прямой выход (вывод 12). Три других триггера соединены между собой так, что образуют делитель на 5. При соединении выхода первого триггера (вывод 12) со входом С2 (вывод 1) цепи остальных триггеров микросхема становится делителем на 10 (рис. 48, а), работающем в коде 1-2-4-8, что и символизируют цифры у выходов графического обозначения микросхемы. Для установки триггеров счетчика в нулевое состояние подают на оба входа R0 (выводы 2 и 3) напряжение высокого уровня.
Два объединенных входа R0 и четыре разделительных выхода микросхемы К155ИЕ2 позволяют без дополнительных элементов строить делители частоты с коэффициентами деления от 2 до 10. Так, например, если соединить между собой выводы 12 и 1, 9 и 2, 8 н 3 (рис. 48,6), то коэффициент счета будет 6, а при соединении выводов 12 и 1, 11,. 2 и 3 (рис. 48,в) коэффициент счета станет 8. Эта особенность микросхемы К155ИЕ2 позволяет использовать ее и как двоичный счетчик импульсов, и как делитель частоты.


Вывод:

Цифровой счетчик импульсов - это цифровой узел, который осуществляет счет поступающих на его вход импульсов. Результат счета формируется счетчиком в заданном коде и может храниться требуемое время. Счетчики строятся на триггерах, при этом количество импульсов, которое может подсчитать счетчик определяется из выражения N = 2n - 1, где n - число триггеров, а минус один, потому что в цифровой технике за начало отсчета принимается 0. Счетчики бывают суммирующие, когда счет идет на увеличение, и вычитающие - счет на уменьшение. Если счетчик может переключаться в процессе работы с суммирования на вычитание и наоборот, то он называется реверсивным.




Download 205 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish