Chuqur o’qitish (Deep learning). Asosiy vazifalari va algoritmlari


Deep learning in satellite image classification



Download 3,34 Mb.
bet5/5
Sana11.02.2022
Hajmi3,34 Mb.
#443737
1   2   3   4   5
Bog'liq
Chuqur oqitish algoritmlari (CNN)

Deep learning in satellite image classification

  • Satellite images have complex structure and deep features that require more complex operations for recognitions. One of the most important uses of satellite and aerial imagery is the production of land-use maps and it can be done through a process called image classification.
  • Since 2012, CNN-based algorithms have been used as an effective way to solve the classification tasks.

19
A simple convolutional neural network structure

Mostly used datasets for satellite image classification


Dataset

Number of
classes

Number of
images

Image size/ Size
of dataset

Spatial
resolution

UC-Merced Land
Use[5]

21

100

256x256

0.3

IARPA fMoW
dataset[6]

63

~1.000.000

256x256

0.5

Sentinel-2, Theia
Land Data Centre[7]

17

Various

64x64

10

Kaggle, DeepSat
(SAT-4) Airborne Dataset[8]

4

99999

28x28

low

Kaggle, Swimming
pool and car detection[9]

2

3748

224x224

10

20

Common class types of remote sensing images for land-use classification [image samples from Google Earth Engine, 2020]


21

Recent results in Satellite image classification


#

CNN based model

Accuracy

Dataset

1

AlexNet

~94%

UC-Merced Land Use

2

CaffeNet

~94%

UC-Merced Land Use

3

GoogleNet

~97%

UC-Merced Land Use

4

FC-CNN

~95%

IARPA fMoW dataset

5

VGG, ResNet, and Inception CNNs

~98,5%

UC-Merced Land Use

22

U-NET Architecture


23
et al. Olaf Ronneberger, 2015
  • The architecture contains two paths (encoder and decoder).
  • The encoder is just a traditional

stack of
convolutional and max pooling layers to
identify what image contains.
  • The second path (decoder) is the symmetric expanding path which is used to enable precise localization using transposed convolutions.
  • It is an end-to-end fully convolutional network (FCN), i.e. it only contains Convolutional layers and does not contain any Dense layer because of which it can accept image of any size.

The basic architecture of image classification based on segmentation using deep neural network


24

Transfer learning with CNNs


25
  • ImageNet is an image database contains more than 14M images which is organized according to the WordNet hierarchy.
  • It is well known that training network without overfitting the dataset should be relatively large, millions of images.
  • Although networks that are trained on the ImageNet dataset are widely used as a source of the initialization for network weights in other tasks

Proposed method


26
  • Proposed method addresses the semantic segmentation of satellite images by aiming at classifying each pixel as belonging to an agricultural field, buildings and unused area.
  • It takes long time to train U-Net model from the scratch.
  • In this case, possible way is using trained models for initializing network weights (VGG-16).

Representation of proposed “UNet+VGG16” model

Results


27

Model

Model accuracy

Processing time

Image dataset

Epochs

UNet

89,8%

1700s

~15.500

10

UNet

94,0%

3371s

~15.500

20

UNet+VGG16

91,0%

1352s

~6.000

10

UNet+VGG16

94,3%

2681s

~6.000

20

Dataset: IITB dataset
U-net Model: Satellite image segmentation U-Net model from https://github.com/manideep2510/eye-in-the-sky
Hardware: NVidia, GeForce GTX 1080 Ti, RAM 64Gb, GPU 11Gb

Foydalanilgan adabiyotlar

Aurelian Geron, Hands on Machine Learning with Scikit-Learn Keras&Tensorflow // Second edition Concepts, Tools, and Techniques to Build Intelligent Systems, 2019, 510 pages

Primoz Potocnik, Neural Networks: MATLAB examples // Neural Networks course (practical examples)© 2012

https://www.guru99.com/deep-learning-tutorial.html

https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_de ep_neural_networks.htm

https://www.mathworks.com/help/deeplearning/examples/create-simple-deep- learning-network-for-classification.html


Download 3,34 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish