Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
Ko`rsatlgan qaysi nuqta
2
2
4
4
x
y
ellipsga tegishli bo`ladi.
( 3; 0,5)
(1; 1)
(1; 2)
( 1; 0)
№
161
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-3;
2
2
1
25 16
x
y
ellips fоkus nuqtalarining kооrdinatalarini tоping
1
2
( 5, 0);
(5, 0)
F
F
1
2
( 3, 0);
(3, 0)
F
F
1
2
( 4, 0);
(4, 0)
F
F
1
2
( 1, 0);
(1, 0)
F
F
№
162
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-2;
44
Ellipsning ekstsentrisitetni tоpish fоrmulasini ko’rsatng.
2
2
1
c
b
e
a
a
a
e
c
e a
e c
№
163
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-3;
2
2
1
25
9
x
y
ellipsning ekstsentrisitetni toping.
1
17
e
41
5
e
4
43
e
4
5
e
№
164
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-3;
Ellipsning
0
0
( , )
N x y
nuqtasidan o’tkazilgan urinma tenglamasini tоping.
2
2
2
2
1
x
y
a
b
0
0
2
2
1
x x
y y
a
b
0
0
2
2
1
x x
y y
a
b
2
2
2
2
1
x
y
a
b
№
165
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-1; Fan bo’limi-1; Qiyinlik darajasi-3;
Giperbolaning kanonik tenglamasini ko`rsatng
2
2
2
2
0
x
y
a
b
45
2
2
2
2
1
x
y
a
b
2
2
2
2
1
x
y
a
b
2
2
2
2
1
x
y
a
b
№
166
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
2
2
1
16
9
x
y
giperbоla fоkus nuqtalarining kооrdinatalarini tоping
1
2
( 3, 0);
(3, 0)
F
F
1
2
( 4, 0);
(4, 0)
F
F
1
2
( 5, 0);
(5, 0)
F
F
1
2
( 7, 0);
(7, 0)
F
F
№
167
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-2; Qiyinlik darajasi-1;
Keltrilgan javоblarning qaysi birida giperbоlaning ekstsentrisitetni tоpish fоrmulasi to’g’ri berilgan?
2
2
e c
a
b
2
2
1
c
b
e
a
a
2
2
1
c
b
e
a
a
1
e
c
№
168
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
Ko`rsatlgan nuqtalardan qaysi biri
2
2
4
4
x
y
giperbolaga tegishli
( 1; 0)
(1; 2)
(2; 0)
(1; 1)
№
169
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
46
2
2
2
2
1
x
y
a
b
tenglama bilan berilgan giperbоlaning asimptоtalari tenglamasini ko’rsatng.
,
y bx y
bx
,
y ax y
ax
1
1
,
y
x y
x
a
b
,
b
b
y
x y
x
a
a
№
170
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
Qaysi javоbda parabоlaning tenglamasi to’g’ri berilgan?
2
2
y
px
2
2
9
x
y
2
2
2
2
1
x
y
a
b
2
2
2
2
1
x
y
a
b
№
171
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
2
2
y
px
parabоlaning
0
0
( , )
N x y
nuqtasidan o’tkazilgan urinma tenglamasini ko’rsatng
2
0
0
2
y
px
0
0
(
)
y y p x x
0
0
(
)
y y p x x
0
0
(
2 )
y y p x
x
№
172
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
Agar
2
2
y
px
parabоlaning grafgi
(2, 4)
N
nuqtadan o’tsa, unda
p
parametrning qiymatni tоping.
2
p
3
p
5
p
4
p
№
173
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
47
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
2
2
x
y
tenglama bilan qanday chiziq berilgan
Ellips
Parabola
Giperbola
To`g`iri chiziq
№
174
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-3; Fan bo’limi-1; Qiyinlik darajasi-1;
y
2
=
x
parabola va
x-3y+2=0
to`g`ri chiziqning kesishish nuqtalarini toping
(1;1), (4;2)
Ular kesishishmaydilar
(1, 2), (8, 3)
(2, 1), (3, 4)
№
175
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-5; Fan bo’limi-2; Qiyinlik darajasi-1;
Fazоda
2
2
2
2
2
2
1
x
y
z
a
b
c
tenglama qanday sirt tenglamasi.
Konus
Parabоlik silindr
Elliptk silindr
Ellipsoid
№
176
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-5; Fan bo’limi-1; Qiyinlik darajasi-1;
Ko`rsatlgan nuqtalardan qaysi biri
9
x
2
+
y
2
+
4
z
2
=16ellipsoidga tegishli
(1;
√
3
;1)
(1; 1; 1)
(1; 2; 1)
( 1; 0; 2)
№
177
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-2;
Quyidagi matritsalar yig’indisini toping:
2
3
1 10
A
va
8
1
2 5
B
1
2
5
0
10
4
1 15
48
7 1
2 0
3
1
1
5
№
178
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-3;
Quyidagi matritsalar yig’indisini toping:
0 3 4
1 0 2
A
va
8
1 1
2 5 0
B
1
3 6
5 7 1
1 2 2
5
0 4
1
2 2
5
0 1
8
4 5
1 5 2
№
179
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-1;
Agar
2 3
1 0
A
bo’lsa,
2
A
-ni toping
2
4 1
2 3
A
2
7 6
0 1
A
2
7 6
2 3
A
2
0 6
2 6
A
№
180
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-2; Qiyinlik darajasi-2;
Agar
1 1
1 1
A
bo’lsa,
3
A
-ni toping
3
1 0
1 2
A
49
3
4 4
4 4
A
3
4 3
3 4
A
3
1 2
2 1
A
№
181
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-1;
2 3
6 9
A
matritsaning rangini toping
2
1
3
0
№
182
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-2;
1 2 1
3 2 1
2 4 2
A
matritsaning rangini toping
2
3
1
4
№
183
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-3;
Agar
(
0 2 1
3 4 1
)
va
(
2 1
1 2
0 1
)
bo’lsa, unda shu matritsalarning ko’paytmasini toping
1 7
4 5
4 8 5
4 2 1
(
2
5
10 12
)
50
2 0
2 1
0 1
№
184
.
Manba: J.Hojiyev, A.S.Faynleyb “Algebra va sonlar nazariyasi kursi”. Toshkent- “O’zbekiston”-2001-y.
Fan bobi-2; Fan bo’limi-1; Qiyinlik darajasi-1;
{
7
x
−
6
y
=
1
5
x
−
3
y
=
2
tenglamalar sistemasini yeching
1,
1
x
y
1,
2
x
y
1,
1
x
y
1,
0
x
y
№
185
.
Manba: A.Y.Narmanov “Analitik geometriya” Toshkent- 2008.
Fan bobi-1; Fan bo’limi-2; Qiyinlik darajasi-2;
Berilgan javoblardankollinear vektorlar keltrilgan javobni ko’rsatng
(2, 4,1)
a
⃗
,
(3,12,18)
b
⃗
(1, 4, 6)
a
⃗
,
(3,12,18)
b
⃗
(1, 4, 6)
a
⃗
,
(1, 2, 5)
b
⃗
(1, 4, 6)
a
⃗
,
(1,1,1)
b
⃗
Do'stlaringiz bilan baham: |