Цепные дроби


Подходящие дроби. Их свойства



Download 1,41 Mb.
bet3/11
Sana23.04.2022
Hajmi1,41 Mb.
#576438
TuriКурсовая
1   2   3   4   5   6   7   8   9   10   11
Bog'liq
олимжон

Подходящие дроби. Их свойства.
Задаче разложения обыкновенной дроби в непрерывную дробь противостоит обратная задача – обращения или свертывания цепной дроби в простую дробь .
При этом основную роль играют дроби вида:
или
которые называются подходящими дробями данной непрерывной дроби или соответствующего ей числа .
Заметим, что = = . Считается, что подходящая дробь имеет порядок k.
Прежде чем приступить к вычислению подходящих дробей заметим, что переходит в , если в первой заменить выражением .
Имеем ,
,
, …,
при этом принимается, что , , , , , и так далее.
Закономерность, которую мы замечаем в построении формулы для (ее числителя и знаменателя ), сохраняется при переходе к и сохранится также при переходе от k к (k+1).
Поэтому, на основании принципа математической индукции, для любого k, где , имеем
(1),
причем (2)
(3)
Далее, говоря о подходящих дробях (в свернутом виде), мы будем иметь в виду их форму .
Соотношения (1) являются рекуррентными формулами для вычисления подходящих дробей, а также их числителей и знаменателей. Из формул для числителя и знаменателя сразу видно, что при увеличении k они возрастают. Последовательное вычисление числителей и знаменателей подходящих дробей по формулам (2) и (3) удобно располагать по схеме:






























































Пример: Найти подходящие дроби к цепной дроби (2, 2, 1, 3, 1, 1, 4, 3).






2

2

1

3

1

1

4

3



2

5

7

26

33

59

269

866



1

2

3

11

14

25

114

367

Подходящие дроби ( ) равны соответственно ; ; ; ; ; ; ; .
Практически нахождение неполных частных и подходящих дробей удобно объединить в одну краткую схему, которую приведем для =(2, 3, 1, 4, 2)

.
А сейчас рассмотрим ряд свойств подходящих дробей.


  1. Теорема: При k=1, 2, …, n выполняется равенство

Доказательство: Проведем индукцию по k:
При k=1 равенство справедливо, так как .
Пусть это равенство верно при некотором k=n ( ).
Докажем справедливость равенства при k=n+1.


, то есть равенство верно при k=n+1.
Согласно принципу полной математической индукции равенство верно для всех k( ).

  1. Теорема: Числитель и знаменатель любой подходящей дроби – взаимно простые числа, то есть всякая k–подходящая дробь несократима.

Доказательство: Докажем это свойство методом от противного. По предыдущему свойству имеем .
Пусть , то есть , тогда из равенства следует, что делится на без остатка, что невозможно. Значит, наше допущение неверно, а верно то, что требовалось доказать, то есть .


  1. Теорема: При

  1. ( )

  2. ( )


Download 1,41 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10   11




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish