Candlesticks, Fibonacci, and Chart Pattern Trading Tools : a synergistic Strategy to Enhance Profits and Reduce Risk



Download 2,22 Mb.
Pdf ko'rish
bet14/165
Sana03.07.2022
Hajmi2,22 Mb.
#734175
1   ...   10   11   12   13   14   15   16   17   ...   165
Bog'liq
03. Candlesticks Fibonacci and Chart Pattern

FIBONACCI ANALYSIS

13
Adding the old and the new branches together reveals a number
of the Fibonacci summation series in each horizontal plane. Figure 3.1
illustrates the count.
According to the same algebraic principle, we can easily identify
Fibonacci summation series in plant life (so-called golden numbers) by
counting the petals of certain common f lowers. Taking the iris at 3
petals, the primrose at 5 petals, the ragwort at 13 petals, the daisy at
34 petals, and the michalmas daisy at 55 (and 89) petals, one must
question whether this pattern is accidental or a particular natural law.
Rule of Alternation in the Sunflower
The beautiful curving lines of the sunf lower have existed naturally
throughout thousands of centuries, and mathematicians have made
them a subject of study for hundreds of years.
The sunf lower has two sets of equiangular spirals superimposed
and intertwined, one turning clockwise and the other turning coun-
terclockwise. There are 21 clockwise and 34 counterclockwise spirals.
Both numbers are part of the Fibonacci summation series. The order
is closely related to the rule of alternation, which Elliott used in his
wave principles to explain human behavior (see Figure 3.2).
Figure 3.1
Fibonacci numbers found in the flowers of the sneezewort. 
Source:
The New Fibonacci Trader Workbook,
by Robert Fischer (New York: Wiley,
2001), p. 4.
c03.qxd 6/17/03 11:46 AM Page 13


14

BASIC PRINCIPLES OF TRADING STRATEGIES
Geometry of the Golden Rectangle and the Golden Section
The famous Greek mathematician Euclid of Megara (450–370 
B
.
C
.)
was the f irst scientist to write about the golden section and to focus
the analysis of a straight line.
The more complex structure of the geometry of a golden rectan-
gle is shown in Figure 3.3. The ratio of the long side of the rectangle
divided by the short side of the rectangle has the proportion of the Fi-
bonacci ratio 1.618.

Download 2,22 Mb.

Do'stlaringiz bilan baham:
1   ...   10   11   12   13   14   15   16   17   ...   165




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish