Formal definition of the derivative
More generally, suppose an arbitrary time interval h starts from the time t = 1. Then the distance traveled is (1 + h)2 −12, which simplifies to give 2h + h2. The time taken is h. Therefore, the average speed over that time interval is (2h + h2)/h, which equals 2 + h, provided h ≠ 0. Obviously, as h approaches zero, this average speed approaches 2. Therefore, the definition of instantaneous speed is satisfied by the value 2 and only that value. What has not been done here—indeed, what the whole procedure deliberately avoids—is to set h equal to 0. As Bishop George Berkeley pointed out in the 18th century, to replace (2h + h2)/h by 2 + h, one must assume h is not zero, and that is what the rigorous definition of a limit achieves.
Even more generally, suppose the calculation starts from an arbitrary time t instead of a fixed t = 1. Then the distance traveled is (t + h)2 − t2, which simplifies to 2th + h2. The time taken is again h. Therefore, the average speed over that time interval is (2th + h2)/h, or 2t + h. Obviously, as h approaches zero, this average speed approaches the limit 2t.
This procedure is so important that it is given a special name: the derivative of t2 is 2t, and this result is obtained by differentiating t2 with respect to t.
One can now go even further and replace t2 by any other function f of time. The distance traveled between times t and t + h is f(t + h) − f(t). The time taken is h. So the average speed is(f(t + h) − f(t))/h. (3)If (3) tends to a limit as h tends to zero, then that limit is defined as the derivative of f(t), written f′(t). Another common notation for the derivative isdf/dt,symbolizing small change in f divided by small change in t. A function is differentiable at t if its derivative exists for that specific value of t. It is differentiable if the derivative exists for all t for which f(t) is defined. A differentiable function must be continuous, but the converse is false. (Indeed, in 1872 Weierstrass produced the first example of a continuous function that cannot be differentiated at any point—a function now known as a nowhere differentiable function.) Table 2 lists the derivatives of a small number of elementary functions. It also lists their integrals, described below.
Real analysis
Last edited by Horep (talk | contribs) Sun, Jun 14 2020 , 2:35:02 G (diff) [m]
Edit summary: Wrong divergence, this refers to divergence of a series, and the link went to the vector calculus divergence.
Current size: 2351 bytes (-4)
VIEW SOURCE
See also the Wikipedia article:
Real analysis
Do'stlaringiz bilan baham: |