U
Unsupervised learning
Learning in the absence of external information on outputs, also called self−organization or
clustering.
C++ Neural Networks and Fuzzy Logic:Preface
Glossary
427
V
Vigilance parameter
A parameter used in Adaptive Resonance Theory. It is used to selectively prevent the activation of a
subsystem in the network.
W
Weight
A number associated with a neuron or with a connection between two neurons, which is used in
aggregating the outputs to determine the activation of a neuron.
Table of Contents
Copyright ©
IDG Books Worldwide, Inc.
C++ Neural Networks and Fuzzy Logic:Preface
Glossary
428
C++ Neural Networks and Fuzzy Logic
by Valluru B. Rao
MTBooks, IDG Books Worldwide, Inc.
ISBN: 1558515526 Pub Date: 06/01/95
Table of Contents
Index
A
ABAM see Adaptive Bi−directional Associative Memory
abstract class, 138
abstract data type, 22
accumulation−distribution, 402, 404,
activation, 3, 18, 89
zero, 182
Adaline, 81, 82, 102, 103, 112
adaptation, 77, 120
Adaptive Bi−directional Associative Memory, 181, 212
Competitive, 212
Differential
Competitive, 212
Hebbian, 212
adaptive filters, 120
adaptive linear element, 102
adaptive models, 120
adaptive parameters, 373
adaptive resonance, 118
Adaptive Resonance Theory I, 104, 107, 108, 115, 117, 243
algorithm for calculations, 246
equations for, 246
F1 layer calculations, 247
F2 layer calculations, 247
modifying connection weights, 248
Top−down inputs, 247
two−thirds rule, 244, 245
Adaptive Resonance Theory II, 248
Adaptive Resonance Theory III, 248
additive composition method, 506
advancing issues, 387
aggregation, 82, 87, 98
Ahmadian, 513
Aiken, 405
algorithm, 1
backpropagation, 7, 103, 271, 373, 375
constructive, 121
data clustering, 245
encoding, 94, 96
C++ Neural Networks and Fuzzy Logic:Preface
Index
429
learning algorithm , 61, 79, 102, 118
adaptive steepest descent, 410
alpha, 273, 274, 330, 372, 373, 384
alphabet classifier system, 320
Amari, 104
analog, 73, 74, 322
signal, 8
AND operation , 64
Anderson, 105
annealing
process, 430
schedule 113
simulated annealing, 113, 114
Anzai, 456, 472
application, 102, 374, 511
nature of , 74
approximation, 109
architecture, 7, 81, 120, 373
Artificial Intelligence , 6, 34
artificial neural network , 1
ART1 see Adaptive Resonance Theory I
ART2 see Adaptive Resonance Theory II
ART3 see Adaptive Resonance Theory III
artneuron class, 249
ASCII, 305, 306, 307, 329
graphic characters, 306
assocpair class
in BAM network, 186
association, 218
asynchronously , 1, 14
asynchronous update, 13, 62
attentional subsystem, 107, 243
Augusteijn, 512
autoassociation , 7, 8, 82,, 92, 102, 180
autoassociative network, 7, 64, 97, 375
average winner distance, 296
Azoff, 410
B
backpropagated errors, 144
Backpropagation, 10, 103, 104, 120, 123, 302, 325, 329, 374
algorithm, 7, 103, 271, 373, 375
beta, 330
calculating error, 396
calculations, 128, 130
changing beta while training, 337
choosing middle layer size, 372
convergence, 372
momentum term, 330
C++ Neural Networks and Fuzzy Logic:Preface
Index
430
noise factor, 336
self−supervised, 375
simulator, 134, 173, 337, 375, 377, 396
training and testing, 396
training law, 333
variations of , 373
Baer, 516
BAM see Bi−directional Associative Memory
bar
chart, 403, 404
features, 513
Barron’s, 377, 378, 388
base class , 25, 28, 138
beta, 136, 337, 372, 373, 384
bias, 16, 77, 125, 128, 378
Bi−directional Associative Memory, 81, 92, 104, 115, 117, 179, 185, 215
connection weight matrix, 212
continuous, 211
inputs, 180
network, 104
outputs, 180
training, 181
Unipolar Binary, 212
bin, 325
binary , 8, 15, 51, 65, 73, 74, 104
input pattern, 51, 98
patterns 11, 97
string, 16, 62
binary to bipolar mapping, 62, 63
binding
dynamic binding , 24, 139
late binding , 24
static binding, 139
bipolar, 15, 17, 104
mapping, 97
string, 16, 62, 180
bit pattern, 13
Blending problem, 418
block averages, 393
bmneuron class, 186
Boltzmann distribution, 113
Boltzmann machine, 92, 112, 113, 118, 419, 512
Booch, 21
boolean logic, 50
bottom−up
connection weight, 248
connections, 107, 244
Box−Jenkins methodology, 406
Brain−State−in−a−Box, 81, 82, 105
breadth, 387, 389
Buckles, 484
C++ Neural Networks and Fuzzy Logic:Preface
Index
431
buy/sell signals, 409, 410
C
cache, 137
Cader, 406
CAM see Content−Addressable−Memory
Carpenter, 92, 107, 117, 243, 269, 517
car navigation, 374
cartesian product, 479
cascade−correlation, 512
Cash Register game, 3, 65
categorization of inputs, 261
category, 37
Cauchy distribution, 113
Cauchy machine, 112, 113, 419
cells
complex cells, 106
simple cells, 106
center of area method, 504
centroid, 507, 508
character recognition, 305
characters
alphabetic, 305
ASCII, 306, 307
garbled, 322
graphic, 306, 307
handwritten, 320
Chawla, 514
Chiang, 513
cin, 25, 58, 71
clamping probabilities, 114
Clinton, Hillary, 405
C language, 21
class, 22
abstract class, 138
base class, 25, 28, 138, 139
derived class, 23, 25, 26, 144
friend class, 23
hierarchy, 27, 138, 139
input_layer class, 138
iostream class, 71
network class, 53, 66
output_layer class, 138
parent class, 26
classification, 322
C layer, 106
codebook vectors, 116
Cohen, 212
Collard, 405
C++ Neural Networks and Fuzzy Logic:Preface
Index
432
column vector, 97
combinatorial problem, 422
comparison layer, 244
competition, 9, 94, 97
competitive learning, 243
compilers
C++ compilers, 27
compilation error messages, 27
complement, 33, 185, 201, 202
complex cells, 106
composition
max−min, 220
compressor, 375
Computer Science, 34
conditional fuzzy
mean, 491
variance, 491
conjugate gradient methods, 373
conjunction operator, 505
connections, 2, 93, 102
bottom−up, 107
excitatory, 272
feedback , 82
inhibitory , 272
lateral, 93, 97, 107, 272, 276
recurrent, 82, 107, 179
top−down, 107
connection weight matrix, 220
connection weights, 89, 98
conscience factor, 302
constraints, 417
constructor, 23, 28, 55, 66
default constructor, 23
Consumer Price Index, 387
Content−Addressable−Memory, 5
continuous
Bi−directional Associative Memory, 211
models, 98
convergence, 78, 79, 96, 118, 119, 132, 323, 372, 373, 375
cooperation, 9, 94
correlation matrix, 9, 63
correlation−product encoding, 220
cost function, 124, 373
Cottrell, 374
counterpropagation, 106
network, 92, 93, 302
cout, 25, 58
C++, 21
classes, 138
code, 36
comments, 58
C++ Neural Networks and Fuzzy Logic:Preface
Index
433
compilers, 27
implementation, 185
crisp, 31, 73, 74
data sets, 475
rules, 48, 217
values, 50
cube, 84, 87, 89, 90
cum_deltas, 331
cycle, 78, 125
learning cycle, 103
cyclic information, 380
D
data biasing, 378
data hiding, 21, 22
data clustering, 109, 245
data completion, 102
data compression, 102, 302
Deboeck, 406
Davalo, 457
de la Maza, 410
Decision support systems, 75
declining issues, 387
decompressor, 375
decorrelation, 384
default
constructor, 23, 66
destructor, 23
defuzzification, 504, 506
degenerate tour, 424
degree of
certainty, 31
membership, 32, 477
degrees of freedom, 383
delete, 24, 144
delta rule, 110−113
derived class, 23, 25, 26, 144
descendant, 139, 143
DeSieno, 302
destructor, 23, 24
digital signal processing boards, 325
dimensionality, 381, 382, 384
directed graph, 65
discount rate, 35
discretization of a character, 98
discrete models, 98
discriminator, 517
disjunction operator, 506
display_input_char function, 308
C++ Neural Networks and Fuzzy Logic:Preface
Index
434
display_winner_weights function, 308
distance
Euclidean, 13
Hamming, 13
DJIA see Dow Jones Industrial Average
DOF see degrees of freedom
domains, 479, 484
dot product, 11, 12, 51, 64, 65
Dow Jones Industrial Average, 378, 386
dual confirmation trading system, 408
dynamic allocation of memory, 24
dynamic binding, 24, 139
dynamics
adaptive, 74
nonadaptive, 74
E
EMA see exponential moving average
encapsulate, 29
encapsulation, 21, 22
encode, 375
encoding, 7, 81, 220
algorithm, 94, 96
correlation−product, 220
phase, 94
thermometer, 380
time, 120
energy, 422
function, 119
level, 113, 422
surface, 177
Engineering, 34
epoch, 125
Ercal, 514
error signal, 103
error surface, 113
error tolerance, 136
Euclidean distance, 13, 280, 296
excitation, 94, 98, 276, 303
excitatory connections, 244, 272
exclusive or, 83
exemplar, 181−183, 201
class in BAM network, 186
pairs, 135, 177
patterns, 135, 177
exemplar pattern, 16, 64
exemplars, 64, 65, 74, 75, 115, 181
Expert systems, 48, 75, 217
exponential moving average, 399
C++ Neural Networks and Fuzzy Logic:Preface
Index
435
extended (database) model, 486
extended−delta−bar−delta, 406
F
factorial, 420
FAM see Fuzzy Associative Memories
Fast Fourier Transform, 374
fault tolerance, 374
feature detector, 328
feature extraction, 7, 513
Federal Reserve, 388, 388
feedback, 4, 5, 93
connections, 123, 179
feed forward
Backpropagation, 81, 92, 112, 115, 123, 384,
network , 145, 406, 409, 511,
architecture, 124,
layout, 124,
network, 10
operation, 185
type, 2
field, 82
filter, 322
financial forecasting, 377
fire, 3, 71, 87, 89
first derivative, 380
fiscal policy, 36
fit values, 32, 217
fit vector, 32, 217, 221
floating point calculations, 519
compilation for, 519
F1 layer, 245
calculations, 247
Fogel, 76, 77
forecasting, 102
model, 378
T−Bill yields, 405
T−Note yields, 405
forward, 93, 104
Fourier transform, 380
Frank, 515
Freeman, 246, 248
frequency
component, 380
signature, 374
frequency spikes, 380
friend class, 23, 66, 68
F2 layer, 245
calculations, 247
C++ Neural Networks and Fuzzy Logic:Preface
Index
436
Fukushima, 92, 106
function
constructor function, 28
energy function, 119
evaluation, 109
fuzzy step function, 101
hyperbolic tangent function, 100
linear function, 99, 102
logistic function, 86, 100
Lyapunov function, 118, 119
member function, 28, 308
objective, 417
overloading, 25, 139
ramp function, 99, 101, 102
reference function, 493
sigmoid
function, 99, 100, 126, 129, 133, 164, 177, 395
logistic function, 100
step function, 99, 101
threshold function, 52, 95, 99, 101
XOR function, 83−85, 87
fuzzifier, 35, 36, 47
program, 50
fuzziness, 48, 50
fuzzy adaptive system, 49
fuzzy ARTMAP, 517
fuzzy association, 217
Fuzzy Associative Memories, 49, 50, 81, 92, 104, 115, 117, 217, 218, 473
encoding, 219, 220
Fuzzy Cognitive Map, 48, 49
fuzzy conditional expectations, 490, 509
fuzzy control , 497, 509
system, 47, 48, 473
fuzzy controller, 47
fuzzy database, 473, 475, 509
fuzzy expected value, 490
fuzzy equivalence relation, 481
fuzzy events, 488, 509
conditional probability of, 491
probability of , 490
fuzzy inputs, 47, 73
fuzzy logic, 31, 34, 50, 473
controller, 473, 497, 509
fuzzy matrix, 217
fuzzy means, 488, 490, 509
fuzzy numbers, 493, 496
triangular, 496
fuzzy OR method, 505
fuzzy outputs, 47, 74
fuzzy quantification, 488
fuzzy queries, 483, 488
C++ Neural Networks and Fuzzy Logic:Preface
Index
437
fuzzy relations, 479, 509
matrix representation, 479
fuzzy rule base, 502−504
fuzzy rules, 47, 50
fuzzy set, 32, 50, 218, 477, 488
complement, 218
height, 218
normal, 218
operations, 32, 217
fuzzy systems, 50, 217
fuzzy−valued, 34
fuzzy values, 477
fuzzy variances, 488, 490, 509
fzneuron class, 221
G
Gader, 513
gain , 107
constant, 273
parameter, 429, 467
gain control, 243, 248
unit, 244
Gallant, 117
Ganesh, 514
Gaussian density function, 458, 459, 524
generalization, 121, 320, 382
ability, 121, 336
generalized delta rule, 112, 176
genetic algorithms, 75, 76, 385
global
minimum, 113, 177
variable, 28
Glover, 471
gradient, 112, 113
grandmother cells, 117
gray scale, 305, 306, 322, 374
grid, 214, 305
Grossberg, 19, 92, 93, 107, 117, 243, 269
Grossberg layer, 9, 19, 82, 92, 106, 302
H
Hamming distance, 13, 201, 202
handwriting analysis, 98
handwriting recognition, 102
handwritten characters, 92
heap, 144
Hebb, 110
Hebbian
C++ Neural Networks and Fuzzy Logic:Preface
Index
438
conditioned learning, 302
learning, 105, 110
Hebb’s rule, 110, 111
Hecht−Nielsen, 93, 106, 302
Herrick Payoff Index, 401
heteroassociation, 7, 8, 82, 92, 102, 104, 180, 181
heteroassociative network, 7, 97
hidden layer, 2, 4, 75, 86, 89
hierarchical neural network, 407
hierarchies of classes, 27, 29
Hinton, 114
Hoff, 102, 112
holographic neural network, 408
Honig, 515
Hopfield, 422, 427, 429
memory, 73, 115, 117, 181
Hopfield network, 9, 11−14, 16, 19, 51, 79, 81, 82, 93, 111, 119, 120, 181, 472
Hotelling transform, 384
Housing Starts, 387
hybrid models, 75
hyperbolic tangent function, 429
hypercube, 218
unit, 218
hyperplane, 84
hypersphere, 273
I
image, 106, 302
compression, 374
processing, 98, 102
five−way transform, 516
recognition, 375
resolution, 322
implementation of functions, 67
ineuron class, 66
inference engine, 47
inheritance, 21, 25, 26, 138
multiple inheritance, 26
inhibition, 9, 94, 98
global, 428, 456
lateral, 272, 276
inhibitory connection, 272
initialization of
bottom−up weights, 250
parameters, 246
top−down weights, 250
weights, 94
inline, 165
C++ Neural Networks and Fuzzy Logic:Preface
Index
439
input, 98
binary input, 98
bipolar input, 98
layer, 2, 10
nature of , 73
number of , 74
patterns, 51, 65
signals, 65
space, 124
vector, 53, 71, 272, 112
input/output, 71
inqreset function, 251
instar, 93
interactions, 94
interconnections, 7
interest rate, 387
internal activation , 3
intersection, 32, 33
inverse mapping, 62, 182
Investor’s Business Daily, 388
iostream, 54, 71
istream, 58
iterative process, 78
Do'stlaringiz bilan baham: |